Approximation of tan(f(n))
$begingroup$
I have the function $f(n)= pi (n+frac{1}{2})+epsilon frac{2pi(n+1/2)-a}{2pi(n+1/2)}$ when $epsilon<<1$, I can't understand what identity I need to use to prove that:
$tan(f(n))approx frac{2pi(n+1/2)}{epsilon(2pi(n+1/2)-a)}$
I tried with taylor but the first element in $f(x)$ taking tan function to $infty$
approximation
$endgroup$
add a comment |
$begingroup$
I have the function $f(n)= pi (n+frac{1}{2})+epsilon frac{2pi(n+1/2)-a}{2pi(n+1/2)}$ when $epsilon<<1$, I can't understand what identity I need to use to prove that:
$tan(f(n))approx frac{2pi(n+1/2)}{epsilon(2pi(n+1/2)-a)}$
I tried with taylor but the first element in $f(x)$ taking tan function to $infty$
approximation
$endgroup$
1
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37
add a comment |
$begingroup$
I have the function $f(n)= pi (n+frac{1}{2})+epsilon frac{2pi(n+1/2)-a}{2pi(n+1/2)}$ when $epsilon<<1$, I can't understand what identity I need to use to prove that:
$tan(f(n))approx frac{2pi(n+1/2)}{epsilon(2pi(n+1/2)-a)}$
I tried with taylor but the first element in $f(x)$ taking tan function to $infty$
approximation
$endgroup$
I have the function $f(n)= pi (n+frac{1}{2})+epsilon frac{2pi(n+1/2)-a}{2pi(n+1/2)}$ when $epsilon<<1$, I can't understand what identity I need to use to prove that:
$tan(f(n))approx frac{2pi(n+1/2)}{epsilon(2pi(n+1/2)-a)}$
I tried with taylor but the first element in $f(x)$ taking tan function to $infty$
approximation
approximation
edited Jan 11 at 13:50
Jam
4,97921431
4,97921431
asked Jan 11 at 13:14
Daniel VainshteinDaniel Vainshtein
19011
19011
1
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37
add a comment |
1
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37
1
1
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The first step is to use
$$ tan(x +npi +pi/2) = -frac{cos x}{sin x}$$
The following is easy
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069812%2fapproximation-of-tanfn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first step is to use
$$ tan(x +npi +pi/2) = -frac{cos x}{sin x}$$
The following is easy
$endgroup$
add a comment |
$begingroup$
The first step is to use
$$ tan(x +npi +pi/2) = -frac{cos x}{sin x}$$
The following is easy
$endgroup$
add a comment |
$begingroup$
The first step is to use
$$ tan(x +npi +pi/2) = -frac{cos x}{sin x}$$
The following is easy
$endgroup$
The first step is to use
$$ tan(x +npi +pi/2) = -frac{cos x}{sin x}$$
The following is easy
answered Jan 11 at 13:33
DamienDamien
60714
60714
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069812%2fapproximation-of-tanfn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Your function is $f(x)$, but it is written in terms of $n$. Should it be $f(n)$?
$endgroup$
– Calvin Godfrey
Jan 11 at 13:28
$begingroup$
What if $aapprox2pi(n+1/2)$?
$endgroup$
– Barry Cipra
Jan 11 at 13:37