Determinant of matrix of submatrices












1














Can you check my solution to:



Task



Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$
and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$



find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$
.



Solution:



We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$



so



$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$



and now let's observe that $det_{n}(xI_n)=x^n$ and



$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$



so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$
when $xneq 0$.



In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



Can you maybe find any simpler solution to this task?










share|cite|improve this question





























    1














    Can you check my solution to:



    Task



    Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



    $
    X=begin{bmatrix}
    x & 0 &0 & dots & 0 \
    x & x & 0& dots & 0\
    x & x & x& dots & 0\
    vdots&vdots&vdots&vdots&vdots \
    x & x & x & dots & x \
    end{bmatrix}
    $
    and $
    Y=begin{bmatrix}
    0 & dots & 0 &0 & y \
    0 & dots & 0 & y & 0\
    0 & dots & y & 0& 0\
    vdots&vdots&vdots&vdots&vdots \
    y & dots & 0 & 0 & 0 \
    end{bmatrix}
    $



    find the $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}
    $
    .



    Solution:



    We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



    $begin{bmatrix}
    A & B \
    C & D \
    end{bmatrix}=begin{bmatrix}
    A & 0 \
    C & I_{n} \
    end{bmatrix}cdotbegin{bmatrix}
    I_n & A^{-1}B \
    0 & D-CA^{-1}B \
    end{bmatrix}
    $



    so



    $det_{2n}begin{bmatrix}
    A & B \
    C & D \
    end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



    We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



    $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
    $



    and now let's observe that $det_{n}(xI_n)=x^n$ and



    $
    X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
    =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
    $



    so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



    and in the end we can write that $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
    $
    when $xneq 0$.



    In the case $x=0$ we see that
    $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=det_{2n}begin{bmatrix}
    0 & Y \
    -Y & 0 \
    end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
    Y & 0 \
    0 & -Y \
    end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



    Can you maybe find any simpler solution to this task?










    share|cite|improve this question



























      1












      1








      1


      0





      Can you check my solution to:



      Task



      Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



      $
      X=begin{bmatrix}
      x & 0 &0 & dots & 0 \
      x & x & 0& dots & 0\
      x & x & x& dots & 0\
      vdots&vdots&vdots&vdots&vdots \
      x & x & x & dots & x \
      end{bmatrix}
      $
      and $
      Y=begin{bmatrix}
      0 & dots & 0 &0 & y \
      0 & dots & 0 & y & 0\
      0 & dots & y & 0& 0\
      vdots&vdots&vdots&vdots&vdots \
      y & dots & 0 & 0 & 0 \
      end{bmatrix}
      $



      find the $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}
      $
      .



      Solution:



      We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



      $begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=begin{bmatrix}
      A & 0 \
      C & I_{n} \
      end{bmatrix}cdotbegin{bmatrix}
      I_n & A^{-1}B \
      0 & D-CA^{-1}B \
      end{bmatrix}
      $



      so



      $det_{2n}begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



      We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
      $



      and now let's observe that $det_{n}(xI_n)=x^n$ and



      $
      X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
      =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
      $



      so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



      and in the end we can write that $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
      $
      when $xneq 0$.



      In the case $x=0$ we see that
      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{2n}begin{bmatrix}
      0 & Y \
      -Y & 0 \
      end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
      Y & 0 \
      0 & -Y \
      end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



      Can you maybe find any simpler solution to this task?










      share|cite|improve this question















      Can you check my solution to:



      Task



      Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



      $
      X=begin{bmatrix}
      x & 0 &0 & dots & 0 \
      x & x & 0& dots & 0\
      x & x & x& dots & 0\
      vdots&vdots&vdots&vdots&vdots \
      x & x & x & dots & x \
      end{bmatrix}
      $
      and $
      Y=begin{bmatrix}
      0 & dots & 0 &0 & y \
      0 & dots & 0 & y & 0\
      0 & dots & y & 0& 0\
      vdots&vdots&vdots&vdots&vdots \
      y & dots & 0 & 0 & 0 \
      end{bmatrix}
      $



      find the $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}
      $
      .



      Solution:



      We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



      $begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=begin{bmatrix}
      A & 0 \
      C & I_{n} \
      end{bmatrix}cdotbegin{bmatrix}
      I_n & A^{-1}B \
      0 & D-CA^{-1}B \
      end{bmatrix}
      $



      so



      $det_{2n}begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



      We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
      $



      and now let's observe that $det_{n}(xI_n)=x^n$ and



      $
      X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
      =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
      $



      so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



      and in the end we can write that $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
      $
      when $xneq 0$.



      In the case $x=0$ we see that
      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{2n}begin{bmatrix}
      0 & Y \
      -Y & 0 \
      end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
      Y & 0 \
      0 & -Y \
      end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



      Can you maybe find any simpler solution to this task?







      matrices determinant block-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Davide Giraudo

      125k16150261




      125k16150261










      asked 2 days ago









      avan1235avan1235

      1926




      1926






















          1 Answer
          1






          active

          oldest

          votes


















          3














          Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






            share|cite|improve this answer


























              3














              Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






              share|cite|improve this answer
























                3












                3








                3






                Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






                share|cite|improve this answer












                Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                user1551user1551

                71.8k566125




                71.8k566125






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    What does “Dominus providebit” mean?

                    Antonio Litta Visconti Arese