Check if infinite series divisible individually by a number or not?
We are given first three numbers of a infinite series and the next elements of series would be decided by following formula:
Tn= Tn-1 + Tn-2 + Tn-3
If we are given the first three numbers as 1, 1, 1, then the series would look like this:
1, 1, 1, 3, 5, 9, 17, 31, . . . .
Now I wanted to ask the logic on how to check if all the elements of the series are indivisible by a number individually. For example, we know that the above series is not divisible by 27. Thanks in advance!
sequences-and-series arithmetic-progressions
New contributor
add a comment |
We are given first three numbers of a infinite series and the next elements of series would be decided by following formula:
Tn= Tn-1 + Tn-2 + Tn-3
If we are given the first three numbers as 1, 1, 1, then the series would look like this:
1, 1, 1, 3, 5, 9, 17, 31, . . . .
Now I wanted to ask the logic on how to check if all the elements of the series are indivisible by a number individually. For example, we know that the above series is not divisible by 27. Thanks in advance!
sequences-and-series arithmetic-progressions
New contributor
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago
add a comment |
We are given first three numbers of a infinite series and the next elements of series would be decided by following formula:
Tn= Tn-1 + Tn-2 + Tn-3
If we are given the first three numbers as 1, 1, 1, then the series would look like this:
1, 1, 1, 3, 5, 9, 17, 31, . . . .
Now I wanted to ask the logic on how to check if all the elements of the series are indivisible by a number individually. For example, we know that the above series is not divisible by 27. Thanks in advance!
sequences-and-series arithmetic-progressions
New contributor
We are given first three numbers of a infinite series and the next elements of series would be decided by following formula:
Tn= Tn-1 + Tn-2 + Tn-3
If we are given the first three numbers as 1, 1, 1, then the series would look like this:
1, 1, 1, 3, 5, 9, 17, 31, . . . .
Now I wanted to ask the logic on how to check if all the elements of the series are indivisible by a number individually. For example, we know that the above series is not divisible by 27. Thanks in advance!
sequences-and-series arithmetic-progressions
sequences-and-series arithmetic-progressions
New contributor
New contributor
New contributor
asked 2 days ago
SarquesSarques
1
1
New contributor
New contributor
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago
add a comment |
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sarques is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062725%2fcheck-if-infinite-series-divisible-individually-by-a-number-or-not%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sarques is a new contributor. Be nice, and check out our Code of Conduct.
Sarques is a new contributor. Be nice, and check out our Code of Conduct.
Sarques is a new contributor. Be nice, and check out our Code of Conduct.
Sarques is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062725%2fcheck-if-infinite-series-divisible-individually-by-a-number-or-not%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
This is a bit vague. For small numbers, like $n=27$, you can just write out the entire sequence $pmod n$. After all, it has to be periodic (as there are only finitely many values available). Of course, even for small $n$, the period can be quite large. For $n=27$ you can notice that $(a_{40},a_{41},a_{42})=(10,10,10)$ so from there on the sequence is just $10$ times what it was up to $a_{39}$. As it is not $0$ in that range, it is never $0$.
– lulu
2 days ago