For which $p in [1,infty]$ does $g, g_{A}$ and $g_{A^{c}} in mathcal{L}^p$ hold?
$begingroup$
Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
.
Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$
Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$
Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$
for $p =1$
$int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $
And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.
Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$
and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.
On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:
$(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$
Any guidance on this problem is greatly appreciated.
real-analysis integration measure-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
.
Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$
Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$
Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$
for $p =1$
$int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $
And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.
Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$
and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.
On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:
$(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$
Any guidance on this problem is greatly appreciated.
real-analysis integration measure-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
.
Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$
Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$
Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$
for $p =1$
$int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $
And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.
Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$
and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.
On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:
$(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$
Any guidance on this problem is greatly appreciated.
real-analysis integration measure-theory lp-spaces
$endgroup$
Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
.
Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$
Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$
Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$
for $p =1$
$int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $
And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.
Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$
and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.
On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:
$(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$
Any guidance on this problem is greatly appreciated.
real-analysis integration measure-theory lp-spaces
real-analysis integration measure-theory lp-spaces
asked Jan 8 at 14:13
MinaThumaMinaThuma
407
407
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.
Here are some steps to solve the problem:
- First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.
- The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
$$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066211%2ffor-which-p-in-1-infty-does-g-g-a-and-g-ac-in-mathcallp-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.
Here are some steps to solve the problem:
- First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.
- The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
$$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$
$endgroup$
add a comment |
$begingroup$
A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.
Here are some steps to solve the problem:
- First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.
- The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
$$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$
$endgroup$
add a comment |
$begingroup$
A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.
Here are some steps to solve the problem:
- First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.
- The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
$$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$
$endgroup$
A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.
Here are some steps to solve the problem:
- First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.
- The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
$$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$
edited Jan 10 at 21:30
answered Jan 8 at 21:34
Davide GiraudoDavide Giraudo
125k16150261
125k16150261
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066211%2ffor-which-p-in-1-infty-does-g-g-a-and-g-ac-in-mathcallp-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown