For which $alphainmathbb{R}$ the integral...












0












$begingroup$


Im looking for which $alphainmathbb{R}$ the integral $int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}$
converges/diverges.



What I was looking for is an appropriate change of variables. I tried
polar coordinates $left(x,yright)=Tleft(r,thetaright)=left(rcostheta,rsinthetaright)$.
So $left|J_{T}left(r,thetaright)right|=r$ and $T^{-1}left(mathbb{R}^{2}right)=left{ left(r,thetaright)mid r>0:,:0<theta<2piright} $
up to a null set. So
$$
int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{rdrdtheta}{left(1+r^{2}+r^{2}sinthetacosthetaright)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{2rdrdtheta}{left(2+r^{2}left(2+sin2thetaright)right)^{alpha}}
$$

Then with another change of variables $t=r^{2}$ we get that $dt=2rdr$
and so I got
$$
intfrac{dtdtheta}{left(2+tleft(2+sin2thetaright)right)^{alpha}}
$$

Questions:




  1. Does it help somehow?

  2. Is there a better change of variables here?

  3. How can I find the range of $alpha$ that im looking for?

  4. Is it possible maybe to block the function with and easier one to integral and then use sandwich?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
    $endgroup$
    – Crostul
    Jan 10 at 8:53










  • $begingroup$
    Is there a way to actually compute the integral?
    $endgroup$
    – Jon
    Jan 10 at 8:55










  • $begingroup$
    @Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:57












  • $begingroup$
    @Jon Explicit computation of integral may not be possible.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:59
















0












$begingroup$


Im looking for which $alphainmathbb{R}$ the integral $int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}$
converges/diverges.



What I was looking for is an appropriate change of variables. I tried
polar coordinates $left(x,yright)=Tleft(r,thetaright)=left(rcostheta,rsinthetaright)$.
So $left|J_{T}left(r,thetaright)right|=r$ and $T^{-1}left(mathbb{R}^{2}right)=left{ left(r,thetaright)mid r>0:,:0<theta<2piright} $
up to a null set. So
$$
int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{rdrdtheta}{left(1+r^{2}+r^{2}sinthetacosthetaright)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{2rdrdtheta}{left(2+r^{2}left(2+sin2thetaright)right)^{alpha}}
$$

Then with another change of variables $t=r^{2}$ we get that $dt=2rdr$
and so I got
$$
intfrac{dtdtheta}{left(2+tleft(2+sin2thetaright)right)^{alpha}}
$$

Questions:




  1. Does it help somehow?

  2. Is there a better change of variables here?

  3. How can I find the range of $alpha$ that im looking for?

  4. Is it possible maybe to block the function with and easier one to integral and then use sandwich?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
    $endgroup$
    – Crostul
    Jan 10 at 8:53










  • $begingroup$
    Is there a way to actually compute the integral?
    $endgroup$
    – Jon
    Jan 10 at 8:55










  • $begingroup$
    @Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:57












  • $begingroup$
    @Jon Explicit computation of integral may not be possible.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:59














0












0








0





$begingroup$


Im looking for which $alphainmathbb{R}$ the integral $int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}$
converges/diverges.



What I was looking for is an appropriate change of variables. I tried
polar coordinates $left(x,yright)=Tleft(r,thetaright)=left(rcostheta,rsinthetaright)$.
So $left|J_{T}left(r,thetaright)right|=r$ and $T^{-1}left(mathbb{R}^{2}right)=left{ left(r,thetaright)mid r>0:,:0<theta<2piright} $
up to a null set. So
$$
int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{rdrdtheta}{left(1+r^{2}+r^{2}sinthetacosthetaright)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{2rdrdtheta}{left(2+r^{2}left(2+sin2thetaright)right)^{alpha}}
$$

Then with another change of variables $t=r^{2}$ we get that $dt=2rdr$
and so I got
$$
intfrac{dtdtheta}{left(2+tleft(2+sin2thetaright)right)^{alpha}}
$$

Questions:




  1. Does it help somehow?

  2. Is there a better change of variables here?

  3. How can I find the range of $alpha$ that im looking for?

  4. Is it possible maybe to block the function with and easier one to integral and then use sandwich?










share|cite|improve this question











$endgroup$




Im looking for which $alphainmathbb{R}$ the integral $int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}$
converges/diverges.



What I was looking for is an appropriate change of variables. I tried
polar coordinates $left(x,yright)=Tleft(r,thetaright)=left(rcostheta,rsinthetaright)$.
So $left|J_{T}left(r,thetaright)right|=r$ and $T^{-1}left(mathbb{R}^{2}right)=left{ left(r,thetaright)mid r>0:,:0<theta<2piright} $
up to a null set. So
$$
int_{mathbb{R}^{2}}frac{dxdy}{left(1+x^{2}+xy+y^{2}right)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{rdrdtheta}{left(1+r^{2}+r^{2}sinthetacosthetaright)^{alpha}}=int_{T^{-1}left(mathbb{R}^{2}right)}frac{2rdrdtheta}{left(2+r^{2}left(2+sin2thetaright)right)^{alpha}}
$$

Then with another change of variables $t=r^{2}$ we get that $dt=2rdr$
and so I got
$$
intfrac{dtdtheta}{left(2+tleft(2+sin2thetaright)right)^{alpha}}
$$

Questions:




  1. Does it help somehow?

  2. Is there a better change of variables here?

  3. How can I find the range of $alpha$ that im looking for?

  4. Is it possible maybe to block the function with and easier one to integral and then use sandwich?







multivariable-calculus multiple-integral change-of-variable






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 8:55







Jon

















asked Jan 10 at 8:46









JonJon

565413




565413












  • $begingroup$
    Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
    $endgroup$
    – Crostul
    Jan 10 at 8:53










  • $begingroup$
    Is there a way to actually compute the integral?
    $endgroup$
    – Jon
    Jan 10 at 8:55










  • $begingroup$
    @Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:57












  • $begingroup$
    @Jon Explicit computation of integral may not be possible.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:59


















  • $begingroup$
    Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
    $endgroup$
    – Crostul
    Jan 10 at 8:53










  • $begingroup$
    Is there a way to actually compute the integral?
    $endgroup$
    – Jon
    Jan 10 at 8:55










  • $begingroup$
    @Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:57












  • $begingroup$
    @Jon Explicit computation of integral may not be possible.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 8:59
















$begingroup$
Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
$endgroup$
– Crostul
Jan 10 at 8:53




$begingroup$
Since the integrand is asymptotic to $r^{-2 alpha}$, you have convergence whenever $- 2 alpha < -1$, i.e. for $alpha >1$.
$endgroup$
– Crostul
Jan 10 at 8:53












$begingroup$
Is there a way to actually compute the integral?
$endgroup$
– Jon
Jan 10 at 8:55




$begingroup$
Is there a way to actually compute the integral?
$endgroup$
– Jon
Jan 10 at 8:55












$begingroup$
@Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 8:57






$begingroup$
@Crostul There is a factor of $r^{2}$ coming in when you switch to polar coordinates.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 8:57














$begingroup$
@Jon Explicit computation of integral may not be possible.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 8:59




$begingroup$
@Jon Explicit computation of integral may not be possible.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 8:59










1 Answer
1






active

oldest

votes


















0












$begingroup$

First note that if the integral over one of the four quadrants converge then the integral over the whole plane converges. [Use the transformations $x to -x$ and $y to -y$ for this]. So integrate over $x,y>0$ Note that $x^{2}+xy+y^{2} geq x^{2}+y^{2}$ and $x^{2}+xy+y^{2} leq 2(x^{2}+y^{2})$ since $2xy leq x^{2}+y^{2}$. Now using polar coordinates you see that the integral converges iff $frac {r} {r^{2alpha}}$ is integrable near $infty$ which is true iff $alpha >1$. Note: I have used the inequalities above just to get rid of $sin (theta)$ and $cos (theta)$. When you have a function of $r$ alone it is easy to see when the integral converges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
    $endgroup$
    – jmerry
    Jan 10 at 9:07










  • $begingroup$
    @jmerry Thanks for the correction. I have edited my answer.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:11











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068403%2ffor-which-alpha-in-mathbbr-the-integral-int-mathbbr2-fracdxdy%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

First note that if the integral over one of the four quadrants converge then the integral over the whole plane converges. [Use the transformations $x to -x$ and $y to -y$ for this]. So integrate over $x,y>0$ Note that $x^{2}+xy+y^{2} geq x^{2}+y^{2}$ and $x^{2}+xy+y^{2} leq 2(x^{2}+y^{2})$ since $2xy leq x^{2}+y^{2}$. Now using polar coordinates you see that the integral converges iff $frac {r} {r^{2alpha}}$ is integrable near $infty$ which is true iff $alpha >1$. Note: I have used the inequalities above just to get rid of $sin (theta)$ and $cos (theta)$. When you have a function of $r$ alone it is easy to see when the integral converges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
    $endgroup$
    – jmerry
    Jan 10 at 9:07










  • $begingroup$
    @jmerry Thanks for the correction. I have edited my answer.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:11
















0












$begingroup$

First note that if the integral over one of the four quadrants converge then the integral over the whole plane converges. [Use the transformations $x to -x$ and $y to -y$ for this]. So integrate over $x,y>0$ Note that $x^{2}+xy+y^{2} geq x^{2}+y^{2}$ and $x^{2}+xy+y^{2} leq 2(x^{2}+y^{2})$ since $2xy leq x^{2}+y^{2}$. Now using polar coordinates you see that the integral converges iff $frac {r} {r^{2alpha}}$ is integrable near $infty$ which is true iff $alpha >1$. Note: I have used the inequalities above just to get rid of $sin (theta)$ and $cos (theta)$. When you have a function of $r$ alone it is easy to see when the integral converges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
    $endgroup$
    – jmerry
    Jan 10 at 9:07










  • $begingroup$
    @jmerry Thanks for the correction. I have edited my answer.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:11














0












0








0





$begingroup$

First note that if the integral over one of the four quadrants converge then the integral over the whole plane converges. [Use the transformations $x to -x$ and $y to -y$ for this]. So integrate over $x,y>0$ Note that $x^{2}+xy+y^{2} geq x^{2}+y^{2}$ and $x^{2}+xy+y^{2} leq 2(x^{2}+y^{2})$ since $2xy leq x^{2}+y^{2}$. Now using polar coordinates you see that the integral converges iff $frac {r} {r^{2alpha}}$ is integrable near $infty$ which is true iff $alpha >1$. Note: I have used the inequalities above just to get rid of $sin (theta)$ and $cos (theta)$. When you have a function of $r$ alone it is easy to see when the integral converges.






share|cite|improve this answer











$endgroup$



First note that if the integral over one of the four quadrants converge then the integral over the whole plane converges. [Use the transformations $x to -x$ and $y to -y$ for this]. So integrate over $x,y>0$ Note that $x^{2}+xy+y^{2} geq x^{2}+y^{2}$ and $x^{2}+xy+y^{2} leq 2(x^{2}+y^{2})$ since $2xy leq x^{2}+y^{2}$. Now using polar coordinates you see that the integral converges iff $frac {r} {r^{2alpha}}$ is integrable near $infty$ which is true iff $alpha >1$. Note: I have used the inequalities above just to get rid of $sin (theta)$ and $cos (theta)$. When you have a function of $r$ alone it is easy to see when the integral converges.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 10 at 9:10

























answered Jan 10 at 8:55









Kavi Rama MurthyKavi Rama Murthy

54.8k32055




54.8k32055












  • $begingroup$
    The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
    $endgroup$
    – jmerry
    Jan 10 at 9:07










  • $begingroup$
    @jmerry Thanks for the correction. I have edited my answer.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:11


















  • $begingroup$
    The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
    $endgroup$
    – jmerry
    Jan 10 at 9:07










  • $begingroup$
    @jmerry Thanks for the correction. I have edited my answer.
    $endgroup$
    – Kavi Rama Murthy
    Jan 10 at 9:11
















$begingroup$
The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
$endgroup$
– jmerry
Jan 10 at 9:07




$begingroup$
The Jacobian of the polar transformation is $r$, not $r^2$. Then we integrate $dtheta$, a fixed total angle - it should be $frac{r}{r^{2alpha}}$ we're testing for integrability at $infty$.
$endgroup$
– jmerry
Jan 10 at 9:07












$begingroup$
@jmerry Thanks for the correction. I have edited my answer.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:11




$begingroup$
@jmerry Thanks for the correction. I have edited my answer.
$endgroup$
– Kavi Rama Murthy
Jan 10 at 9:11


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068403%2ffor-which-alpha-in-mathbbr-the-integral-int-mathbbr2-fracdxdy%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

What does “Dominus providebit” mean?

Antonio Litta Visconti Arese