Deriving quantiles for $L_1$ using $textbf{P}{ L_n > n cdot a }$ as n tends to infinity












2












$begingroup$


Given a random variable
$$L_n = sum_{i=1}^n X_i Z_i $$
where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.

According to Cramér’s large deviation theorem,
$$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
\
Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
\
Lambda (xi) = log left(kappa(xi) right) $$

where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
$$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
begin{align*}
text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
= & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
}
end{align*}

where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
begin{align*}
e^{-nLambda^*(a )} = 1- alpha
\
e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
\
kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
end{align*}

However, I cannot directly solve this equation since $a$ is in $xi^*$.

How do I proceed?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Given a random variable
    $$L_n = sum_{i=1}^n X_i Z_i $$
    where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.

    According to Cramér’s large deviation theorem,
    $$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
    \
    Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
    \
    Lambda (xi) = log left(kappa(xi) right) $$

    where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
    $$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
    Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
    begin{align*}
    text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
    = & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
    approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
    }
    end{align*}

    where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
    begin{align*}
    e^{-nLambda^*(a )} = 1- alpha
    \
    e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
    \
    kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
    end{align*}

    However, I cannot directly solve this equation since $a$ is in $xi^*$.

    How do I proceed?










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      2



      $begingroup$


      Given a random variable
      $$L_n = sum_{i=1}^n X_i Z_i $$
      where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.

      According to Cramér’s large deviation theorem,
      $$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
      \
      Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
      \
      Lambda (xi) = log left(kappa(xi) right) $$

      where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
      $$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
      Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
      begin{align*}
      text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
      = & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
      approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
      }
      end{align*}

      where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
      begin{align*}
      e^{-nLambda^*(a )} = 1- alpha
      \
      e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
      \
      kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
      end{align*}

      However, I cannot directly solve this equation since $a$ is in $xi^*$.

      How do I proceed?










      share|cite|improve this question











      $endgroup$




      Given a random variable
      $$L_n = sum_{i=1}^n X_i Z_i $$
      where $X_i sim Bernoulli(p)$ and $Z_i sim exp(theta)$. I assume ${Z_i }$ is i.i.d. and the sequences ${X_i }$ and ${Z_i }$ are independent.

      According to Cramér’s large deviation theorem,
      $$lim_{n rightarrow infty} frac{1}{n} log left( textbf{P}{ L_n > n cdot a }right) = - Lambda^*(a)
      \
      Lambda^*(a) = sup_{xi in mathbb{R}} left( xi a - Lambda (xi) right)
      \
      Lambda (xi) = log left(kappa(xi) right) $$

      where $kappa$ denotes the moment generating function for $X_1 Z_1$ and $a>0$. Note that $kappa(xi) = frac{p theta}{theta - xi}+1-p$. I have calculated the $xi^*$ that solves $Lambda^*(a)$
      $$xi(a,p,theta)^*= frac{theta (2-p) - sqrt{p cdot (theta^2p + frac{4(p+theta)}{a}) } }{2(1-p)}.$$
      Now, by using the approximation $ textbf{P}{ L_n > n cdot a } approx e^{-n Lambda^*(a)} $, I want to calculate the $alpha$-quantile $(VaR_{alpha})$, where I think of $n$ as "large" and $alpha$, $theta$ and $p$ as given. Formally, I can get this far:
      begin{align*}
      text{VaR}_alpha(L) = & text{inf} { x in mathbb{R} : P(L>x) leq 1-alpha } \
      = & text{inf} { a in mathbb{R} : P left( L>n cdot a right ) leq 1-alpha ) \
      approx& inf { a in mathbb{R} : e^{-n Lambda^*(a ) } = 1-alpha
      }
      end{align*}

      where the equality comes from $Lambda^*(a)$ being smooth. Thus I have to find the smallest $a$ that solves $e^{-nLambda^*(a )} = alpha$ for a "large" n.
      begin{align*}
      e^{-nLambda^*(a )} = 1- alpha
      \
      e^{-n(xi^* a - log (kappa (xi^*)) )} =1- alpha
      \
      kappa(xi^*)^n e^{-n xi^* a} = 1- alpha
      end{align*}

      However, I cannot directly solve this equation since $a$ is in $xi^*$.

      How do I proceed?







      real-analysis limits probability-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 15:15







      Mads Hulgaard

















      asked Jan 11 at 12:12









      Mads HulgaardMads Hulgaard

      748




      748






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069770%2fderiving-quantiles-for-l-1-using-textbfp-l-n-n-cdot-a-as-n-tends%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069770%2fderiving-quantiles-for-l-1-using-textbfp-l-n-n-cdot-a-as-n-tends%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?