Solving $int frac1{cos x}mathrm dx$ [duplicate]
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
3
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago
add a comment |
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
calculus indefinite-integrals
calculus indefinite-integrals
edited 2 days ago
mrtaurho
4,05921133
4,05921133
asked 2 days ago
El BryanEl Bryan
397
397
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
3
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago
add a comment |
3
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago
3
3
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago
add a comment |
4 Answers
4
active
oldest
votes
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
add a comment |
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
add a comment |
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos(x)}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
add a comment |
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
add a comment |
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
add a comment |
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
answered 2 days ago
DonAntonioDonAntonio
177k1492225
177k1492225
add a comment |
add a comment |
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
add a comment |
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
add a comment |
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
edited 2 days ago
answered 2 days ago
aledenaleden
1,840411
1,840411
add a comment |
add a comment |
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos(x)}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
add a comment |
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos(x)}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
add a comment |
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos(x)}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos(x)}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
edited 2 days ago
answered 2 days ago
mrtaurhomrtaurho
4,05921133
4,05921133
add a comment |
add a comment |
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
add a comment |
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
add a comment |
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
edited 2 days ago
answered 2 days ago
Rhys HughesRhys Hughes
5,0441427
5,0441427
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
add a comment |
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
1
1
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
Whoops. Added, cheers.
– Rhys Hughes
2 days ago
add a comment |
3
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
– greelious
2 days ago