Proof verification for bounded sets.












0












$begingroup$


Is my proof for set boundedness correct?



Proposition:



Let $Asubseteq mathbb{R}.$ Then $A$ is bounded if and only if $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$.



Proof:



Suppose that $A$ is bounded. Then there exists $Min mathbb{R}$ and $minmathbb{R}$ such that $mleq{a}leq{M}$. Take $K=text{max}(|M|,|m|,1)$ so that $Kgt{0}$. Therefore $-Kle{a}le{K}$ and thus, $|a|le{K}$.



Conversely, assume that $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$ holds. Then we have that $-Kleq{a}leq{K}$. Therefore $-Kleq{a}$ for all $ain{A}$ so $A$ is bounded below and $aleq{K}$
for all $ain{A}$ so $A$ is bounded above. Thus, $A$ is bounded.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Yes it is correct.
    $endgroup$
    – Yanko
    Jan 22 at 14:40






  • 2




    $begingroup$
    Approved. $ddotsmile$
    $endgroup$
    – Maksim
    Jan 22 at 15:13






  • 2




    $begingroup$
    Thanks to you both ;)
    $endgroup$
    – user503154
    Jan 22 at 15:17
















0












$begingroup$


Is my proof for set boundedness correct?



Proposition:



Let $Asubseteq mathbb{R}.$ Then $A$ is bounded if and only if $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$.



Proof:



Suppose that $A$ is bounded. Then there exists $Min mathbb{R}$ and $minmathbb{R}$ such that $mleq{a}leq{M}$. Take $K=text{max}(|M|,|m|,1)$ so that $Kgt{0}$. Therefore $-Kle{a}le{K}$ and thus, $|a|le{K}$.



Conversely, assume that $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$ holds. Then we have that $-Kleq{a}leq{K}$. Therefore $-Kleq{a}$ for all $ain{A}$ so $A$ is bounded below and $aleq{K}$
for all $ain{A}$ so $A$ is bounded above. Thus, $A$ is bounded.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Yes it is correct.
    $endgroup$
    – Yanko
    Jan 22 at 14:40






  • 2




    $begingroup$
    Approved. $ddotsmile$
    $endgroup$
    – Maksim
    Jan 22 at 15:13






  • 2




    $begingroup$
    Thanks to you both ;)
    $endgroup$
    – user503154
    Jan 22 at 15:17














0












0








0





$begingroup$


Is my proof for set boundedness correct?



Proposition:



Let $Asubseteq mathbb{R}.$ Then $A$ is bounded if and only if $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$.



Proof:



Suppose that $A$ is bounded. Then there exists $Min mathbb{R}$ and $minmathbb{R}$ such that $mleq{a}leq{M}$. Take $K=text{max}(|M|,|m|,1)$ so that $Kgt{0}$. Therefore $-Kle{a}le{K}$ and thus, $|a|le{K}$.



Conversely, assume that $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$ holds. Then we have that $-Kleq{a}leq{K}$. Therefore $-Kleq{a}$ for all $ain{A}$ so $A$ is bounded below and $aleq{K}$
for all $ain{A}$ so $A$ is bounded above. Thus, $A$ is bounded.










share|cite|improve this question









$endgroup$




Is my proof for set boundedness correct?



Proposition:



Let $Asubseteq mathbb{R}.$ Then $A$ is bounded if and only if $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$.



Proof:



Suppose that $A$ is bounded. Then there exists $Min mathbb{R}$ and $minmathbb{R}$ such that $mleq{a}leq{M}$. Take $K=text{max}(|M|,|m|,1)$ so that $Kgt{0}$. Therefore $-Kle{a}le{K}$ and thus, $|a|le{K}$.



Conversely, assume that $exists{K}gt{0}$ s.t $forall{a}in{A}, |a|leq{K}$ holds. Then we have that $-Kleq{a}leq{K}$. Therefore $-Kleq{a}$ for all $ain{A}$ so $A$ is bounded below and $aleq{K}$
for all $ain{A}$ so $A$ is bounded above. Thus, $A$ is bounded.







proof-verification






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 14:39







user503154















  • 4




    $begingroup$
    Yes it is correct.
    $endgroup$
    – Yanko
    Jan 22 at 14:40






  • 2




    $begingroup$
    Approved. $ddotsmile$
    $endgroup$
    – Maksim
    Jan 22 at 15:13






  • 2




    $begingroup$
    Thanks to you both ;)
    $endgroup$
    – user503154
    Jan 22 at 15:17














  • 4




    $begingroup$
    Yes it is correct.
    $endgroup$
    – Yanko
    Jan 22 at 14:40






  • 2




    $begingroup$
    Approved. $ddotsmile$
    $endgroup$
    – Maksim
    Jan 22 at 15:13






  • 2




    $begingroup$
    Thanks to you both ;)
    $endgroup$
    – user503154
    Jan 22 at 15:17








4




4




$begingroup$
Yes it is correct.
$endgroup$
– Yanko
Jan 22 at 14:40




$begingroup$
Yes it is correct.
$endgroup$
– Yanko
Jan 22 at 14:40




2




2




$begingroup$
Approved. $ddotsmile$
$endgroup$
– Maksim
Jan 22 at 15:13




$begingroup$
Approved. $ddotsmile$
$endgroup$
– Maksim
Jan 22 at 15:13




2




2




$begingroup$
Thanks to you both ;)
$endgroup$
– user503154
Jan 22 at 15:17




$begingroup$
Thanks to you both ;)
$endgroup$
– user503154
Jan 22 at 15:17










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083248%2fproof-verification-for-bounded-sets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083248%2fproof-verification-for-bounded-sets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?