Convex or Concave Function












0












$begingroup$


the problem is: Is the function $phi(f)=frac{sqrt{f}}{2}cdotlog f$ for $fin L^2(mathbb{R}_{>0})$ convex or concave.
My idee or presumption is, that the function $phi$ is concave, because we have the inequalitiy[sqrt{alphacdot f+(1-alpha)cdot g}geq alphacdot sqrt{f}+(1-alpha)cdotsqrt{g}quadtext{for}~alphain(0,1).]










share|cite|improve this question









$endgroup$












  • $begingroup$
    How do you define convexity of $phi$?
    $endgroup$
    – gerw
    Jan 22 at 15:20










  • $begingroup$
    We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
    $endgroup$
    – FuncAna09
    Jan 22 at 17:59












  • $begingroup$
    But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
    $endgroup$
    – gerw
    Jan 22 at 18:00










  • $begingroup$
    Sorry, the correct definition is $phi(f(x)).$ f is also a map.
    $endgroup$
    – FuncAna09
    Jan 22 at 18:06


















0












$begingroup$


the problem is: Is the function $phi(f)=frac{sqrt{f}}{2}cdotlog f$ for $fin L^2(mathbb{R}_{>0})$ convex or concave.
My idee or presumption is, that the function $phi$ is concave, because we have the inequalitiy[sqrt{alphacdot f+(1-alpha)cdot g}geq alphacdot sqrt{f}+(1-alpha)cdotsqrt{g}quadtext{for}~alphain(0,1).]










share|cite|improve this question









$endgroup$












  • $begingroup$
    How do you define convexity of $phi$?
    $endgroup$
    – gerw
    Jan 22 at 15:20










  • $begingroup$
    We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
    $endgroup$
    – FuncAna09
    Jan 22 at 17:59












  • $begingroup$
    But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
    $endgroup$
    – gerw
    Jan 22 at 18:00










  • $begingroup$
    Sorry, the correct definition is $phi(f(x)).$ f is also a map.
    $endgroup$
    – FuncAna09
    Jan 22 at 18:06
















0












0








0


0



$begingroup$


the problem is: Is the function $phi(f)=frac{sqrt{f}}{2}cdotlog f$ for $fin L^2(mathbb{R}_{>0})$ convex or concave.
My idee or presumption is, that the function $phi$ is concave, because we have the inequalitiy[sqrt{alphacdot f+(1-alpha)cdot g}geq alphacdot sqrt{f}+(1-alpha)cdotsqrt{g}quadtext{for}~alphain(0,1).]










share|cite|improve this question









$endgroup$




the problem is: Is the function $phi(f)=frac{sqrt{f}}{2}cdotlog f$ for $fin L^2(mathbb{R}_{>0})$ convex or concave.
My idee or presumption is, that the function $phi$ is concave, because we have the inequalitiy[sqrt{alphacdot f+(1-alpha)cdot g}geq alphacdot sqrt{f}+(1-alpha)cdotsqrt{g}quadtext{for}~alphain(0,1).]







functional-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 14:27









FuncAna09FuncAna09

93




93












  • $begingroup$
    How do you define convexity of $phi$?
    $endgroup$
    – gerw
    Jan 22 at 15:20










  • $begingroup$
    We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
    $endgroup$
    – FuncAna09
    Jan 22 at 17:59












  • $begingroup$
    But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
    $endgroup$
    – gerw
    Jan 22 at 18:00










  • $begingroup$
    Sorry, the correct definition is $phi(f(x)).$ f is also a map.
    $endgroup$
    – FuncAna09
    Jan 22 at 18:06




















  • $begingroup$
    How do you define convexity of $phi$?
    $endgroup$
    – gerw
    Jan 22 at 15:20










  • $begingroup$
    We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
    $endgroup$
    – FuncAna09
    Jan 22 at 17:59












  • $begingroup$
    But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
    $endgroup$
    – gerw
    Jan 22 at 18:00










  • $begingroup$
    Sorry, the correct definition is $phi(f(x)).$ f is also a map.
    $endgroup$
    – FuncAna09
    Jan 22 at 18:06


















$begingroup$
How do you define convexity of $phi$?
$endgroup$
– gerw
Jan 22 at 15:20




$begingroup$
How do you define convexity of $phi$?
$endgroup$
– gerw
Jan 22 at 15:20












$begingroup$
We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
$endgroup$
– FuncAna09
Jan 22 at 17:59






$begingroup$
We call a map convex, if [phi(alphacdot f+(1-alpha)cdot g)leq alphacdot phi(f)+(1-alpha)cdot phi(f)] for $alphain (0,1)$
$endgroup$
– FuncAna09
Jan 22 at 17:59














$begingroup$
But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
$endgroup$
– gerw
Jan 22 at 18:00




$begingroup$
But $phi( something )$ is a function. Is $ge$ to be understood pointwise?
$endgroup$
– gerw
Jan 22 at 18:00












$begingroup$
Sorry, the correct definition is $phi(f(x)).$ f is also a map.
$endgroup$
– FuncAna09
Jan 22 at 18:06






$begingroup$
Sorry, the correct definition is $phi(f(x)).$ f is also a map.
$endgroup$
– FuncAna09
Jan 22 at 18:06












1 Answer
1






active

oldest

votes


















0












$begingroup$

Waht i have so far for $phi:mathbb{R}_{>0}tomathbb{R}$ with $fmapsto phi(f)$
$begin{align*}
-phi(alphacdot f+(1-alpha)cdot g)&=-sqrt{alphacdot f+(1-alpha)cdot g}log(alphacdot f+(1-alpha)cdot g)\
&leq -(alphasqrt f+(1-alpha) sqrt{g})log(f^{alpha}g^{(1-alpha)})\
&=-left[(alphasqrt f+(1-alpha) sqrt{g})(alphalog(f)+(1-alpha)log(g))right]\
&=-[alpha^2sqrt{f}log(f)+alpha(1-alpha)sqrt{f}log(g)+alpha(1-alpha)sqrt{g}log(f)\
&+(1-alpha)^2sqrt{g}log(g)]\
&=...
end{align*}$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083231%2fconvex-or-concave-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Waht i have so far for $phi:mathbb{R}_{>0}tomathbb{R}$ with $fmapsto phi(f)$
    $begin{align*}
    -phi(alphacdot f+(1-alpha)cdot g)&=-sqrt{alphacdot f+(1-alpha)cdot g}log(alphacdot f+(1-alpha)cdot g)\
    &leq -(alphasqrt f+(1-alpha) sqrt{g})log(f^{alpha}g^{(1-alpha)})\
    &=-left[(alphasqrt f+(1-alpha) sqrt{g})(alphalog(f)+(1-alpha)log(g))right]\
    &=-[alpha^2sqrt{f}log(f)+alpha(1-alpha)sqrt{f}log(g)+alpha(1-alpha)sqrt{g}log(f)\
    &+(1-alpha)^2sqrt{g}log(g)]\
    &=...
    end{align*}$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Waht i have so far for $phi:mathbb{R}_{>0}tomathbb{R}$ with $fmapsto phi(f)$
      $begin{align*}
      -phi(alphacdot f+(1-alpha)cdot g)&=-sqrt{alphacdot f+(1-alpha)cdot g}log(alphacdot f+(1-alpha)cdot g)\
      &leq -(alphasqrt f+(1-alpha) sqrt{g})log(f^{alpha}g^{(1-alpha)})\
      &=-left[(alphasqrt f+(1-alpha) sqrt{g})(alphalog(f)+(1-alpha)log(g))right]\
      &=-[alpha^2sqrt{f}log(f)+alpha(1-alpha)sqrt{f}log(g)+alpha(1-alpha)sqrt{g}log(f)\
      &+(1-alpha)^2sqrt{g}log(g)]\
      &=...
      end{align*}$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Waht i have so far for $phi:mathbb{R}_{>0}tomathbb{R}$ with $fmapsto phi(f)$
        $begin{align*}
        -phi(alphacdot f+(1-alpha)cdot g)&=-sqrt{alphacdot f+(1-alpha)cdot g}log(alphacdot f+(1-alpha)cdot g)\
        &leq -(alphasqrt f+(1-alpha) sqrt{g})log(f^{alpha}g^{(1-alpha)})\
        &=-left[(alphasqrt f+(1-alpha) sqrt{g})(alphalog(f)+(1-alpha)log(g))right]\
        &=-[alpha^2sqrt{f}log(f)+alpha(1-alpha)sqrt{f}log(g)+alpha(1-alpha)sqrt{g}log(f)\
        &+(1-alpha)^2sqrt{g}log(g)]\
        &=...
        end{align*}$






        share|cite|improve this answer









        $endgroup$



        Waht i have so far for $phi:mathbb{R}_{>0}tomathbb{R}$ with $fmapsto phi(f)$
        $begin{align*}
        -phi(alphacdot f+(1-alpha)cdot g)&=-sqrt{alphacdot f+(1-alpha)cdot g}log(alphacdot f+(1-alpha)cdot g)\
        &leq -(alphasqrt f+(1-alpha) sqrt{g})log(f^{alpha}g^{(1-alpha)})\
        &=-left[(alphasqrt f+(1-alpha) sqrt{g})(alphalog(f)+(1-alpha)log(g))right]\
        &=-[alpha^2sqrt{f}log(f)+alpha(1-alpha)sqrt{f}log(g)+alpha(1-alpha)sqrt{g}log(f)\
        &+(1-alpha)^2sqrt{g}log(g)]\
        &=...
        end{align*}$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 22 at 20:31









        FuncAna09FuncAna09

        93




        93






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083231%2fconvex-or-concave-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?