Something about Fourier expansion












1














Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
$$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
$$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$



1)Calculate the F(x) Fourier expansion



2)proof
$$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$



My attempt



1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$



$b_n=int_{-pi}^{pi}f(t)sin nt dt$
Then I don’t know what to do next
2)
I think it’s a little like uniformly convergence’character
But I don’t have idea to proof this










share|cite|improve this question



























    1














    Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
    $$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
    $$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$



    1)Calculate the F(x) Fourier expansion



    2)proof
    $$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$



    My attempt



    1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$



    $b_n=int_{-pi}^{pi}f(t)sin nt dt$
    Then I don’t know what to do next
    2)
    I think it’s a little like uniformly convergence’character
    But I don’t have idea to proof this










    share|cite|improve this question

























      1












      1








      1


      1





      Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
      $$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
      $$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$



      1)Calculate the F(x) Fourier expansion



      2)proof
      $$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$



      My attempt



      1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$



      $b_n=int_{-pi}^{pi}f(t)sin nt dt$
      Then I don’t know what to do next
      2)
      I think it’s a little like uniformly convergence’character
      But I don’t have idea to proof this










      share|cite|improve this question













      Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
      $$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
      $$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$



      1)Calculate the F(x) Fourier expansion



      2)proof
      $$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$



      My attempt



      1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$



      $b_n=int_{-pi}^{pi}f(t)sin nt dt$
      Then I don’t know what to do next
      2)
      I think it’s a little like uniformly convergence’character
      But I don’t have idea to proof this







      real-analysis calculus integration functional-analysis analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      jacksonjackson

      758




      758






















          1 Answer
          1






          active

          oldest

          votes


















          3














          Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.



          $$
          pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
          $$

          $$
          pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
          $$
          This gives
          $$
          F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
          $$
          where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
          $$begin{eqnarray}
          pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
          &=&2pisum_{n=1}^infty frac{b_n}{n}.
          end{eqnarray}$$



          For (b), note that the stament is equivalent to
          $$
          F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
          $$
          But this is obvious from $(*)$:
          $$begin{eqnarray}
          sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
          end{eqnarray}$$






          share|cite|improve this answer























          • i don’t understand this why F is $in C^1$then F is uniformly convergence
            – jackson
            2 days ago












          • And the five line integration by part is wrong
            – jackson
            2 days ago












          • It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
            – jackson
            2 days ago












          • The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
            – jackson
            yesterday












          • You are absolutely right ... Sorry for the confusion.
            – Song
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062863%2fsomething-about-fourier-expansion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.



          $$
          pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
          $$

          $$
          pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
          $$
          This gives
          $$
          F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
          $$
          where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
          $$begin{eqnarray}
          pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
          &=&2pisum_{n=1}^infty frac{b_n}{n}.
          end{eqnarray}$$



          For (b), note that the stament is equivalent to
          $$
          F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
          $$
          But this is obvious from $(*)$:
          $$begin{eqnarray}
          sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
          end{eqnarray}$$






          share|cite|improve this answer























          • i don’t understand this why F is $in C^1$then F is uniformly convergence
            – jackson
            2 days ago












          • And the five line integration by part is wrong
            – jackson
            2 days ago












          • It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
            – jackson
            2 days ago












          • The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
            – jackson
            yesterday












          • You are absolutely right ... Sorry for the confusion.
            – Song
            yesterday
















          3














          Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.



          $$
          pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
          $$

          $$
          pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
          $$
          This gives
          $$
          F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
          $$
          where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
          $$begin{eqnarray}
          pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
          &=&2pisum_{n=1}^infty frac{b_n}{n}.
          end{eqnarray}$$



          For (b), note that the stament is equivalent to
          $$
          F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
          $$
          But this is obvious from $(*)$:
          $$begin{eqnarray}
          sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
          end{eqnarray}$$






          share|cite|improve this answer























          • i don’t understand this why F is $in C^1$then F is uniformly convergence
            – jackson
            2 days ago












          • And the five line integration by part is wrong
            – jackson
            2 days ago












          • It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
            – jackson
            2 days ago












          • The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
            – jackson
            yesterday












          • You are absolutely right ... Sorry for the confusion.
            – Song
            yesterday














          3












          3








          3






          Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.



          $$
          pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
          $$

          $$
          pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
          $$
          This gives
          $$
          F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
          $$
          where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
          $$begin{eqnarray}
          pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
          &=&2pisum_{n=1}^infty frac{b_n}{n}.
          end{eqnarray}$$



          For (b), note that the stament is equivalent to
          $$
          F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
          $$
          But this is obvious from $(*)$:
          $$begin{eqnarray}
          sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
          end{eqnarray}$$






          share|cite|improve this answer














          Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.



          $$
          pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
          $$

          $$
          pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
          $$
          This gives
          $$
          F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
          $$
          where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
          $$begin{eqnarray}
          pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
          &=&2pisum_{n=1}^infty frac{b_n}{n}.
          end{eqnarray}$$



          For (b), note that the stament is equivalent to
          $$
          F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
          $$
          But this is obvious from $(*)$:
          $$begin{eqnarray}
          sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
          end{eqnarray}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered 2 days ago









          SongSong

          6,050318




          6,050318












          • i don’t understand this why F is $in C^1$then F is uniformly convergence
            – jackson
            2 days ago












          • And the five line integration by part is wrong
            – jackson
            2 days ago












          • It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
            – jackson
            2 days ago












          • The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
            – jackson
            yesterday












          • You are absolutely right ... Sorry for the confusion.
            – Song
            yesterday


















          • i don’t understand this why F is $in C^1$then F is uniformly convergence
            – jackson
            2 days ago












          • And the five line integration by part is wrong
            – jackson
            2 days ago












          • It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
            – jackson
            2 days ago












          • The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
            – jackson
            yesterday












          • You are absolutely right ... Sorry for the confusion.
            – Song
            yesterday
















          i don’t understand this why F is $in C^1$then F is uniformly convergence
          – jackson
          2 days ago






          i don’t understand this why F is $in C^1$then F is uniformly convergence
          – jackson
          2 days ago














          And the five line integration by part is wrong
          – jackson
          2 days ago






          And the five line integration by part is wrong
          – jackson
          2 days ago














          It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
          – jackson
          2 days ago






          It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
          – jackson
          2 days ago














          The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
          – jackson
          yesterday






          The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
          – jackson
          yesterday














          You are absolutely right ... Sorry for the confusion.
          – Song
          yesterday




          You are absolutely right ... Sorry for the confusion.
          – Song
          yesterday


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062863%2fsomething-about-fourier-expansion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?