Something about Fourier expansion
Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
$$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
$$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$
1)Calculate the F(x) Fourier expansion
2)proof
$$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$
My attempt
1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$
$b_n=int_{-pi}^{pi}f(t)sin nt dt$
Then I don’t know what to do next
2)
I think it’s a little like uniformly convergence’character
But I don’t have idea to proof this
real-analysis calculus integration functional-analysis analysis
add a comment |
Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
$$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
$$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$
1)Calculate the F(x) Fourier expansion
2)proof
$$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$
My attempt
1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$
$b_n=int_{-pi}^{pi}f(t)sin nt dt$
Then I don’t know what to do next
2)
I think it’s a little like uniformly convergence’character
But I don’t have idea to proof this
real-analysis calculus integration functional-analysis analysis
add a comment |
Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
$$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
$$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$
1)Calculate the F(x) Fourier expansion
2)proof
$$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$
My attempt
1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$
$b_n=int_{-pi}^{pi}f(t)sin nt dt$
Then I don’t know what to do next
2)
I think it’s a little like uniformly convergence’character
But I don’t have idea to proof this
real-analysis calculus integration functional-analysis analysis
Suppose f is continuity on $[-pi,+pi],period ~T=2pi$
$$f(x)sim frac{a_0}{2}+sum_{n=1}^{+infty}a_n cos nx +b_nsin nx$$
$$F(x)=int_0^x[f(t)-frac{a_0}{2}]dt$$
1)Calculate the F(x) Fourier expansion
2)proof
$$int_a^bf(t)dt=int_a^b frac{a_0}{2}dt +sum_{n=1}^{infty}int_a^b a_n cos nx +b_nsin nx dt$$
My attempt
1)$a_n=int_{-pi}^{pi}f(t)cos ntdt$
$b_n=int_{-pi}^{pi}f(t)sin nt dt$
Then I don’t know what to do next
2)
I think it’s a little like uniformly convergence’character
But I don’t have idea to proof this
real-analysis calculus integration functional-analysis analysis
real-analysis calculus integration functional-analysis analysis
asked 2 days ago
jacksonjackson
758
758
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.
$$
pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
$$
$$
pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
$$ This gives
$$
F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
$$ where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
$$begin{eqnarray}
pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
&=&2pisum_{n=1}^infty frac{b_n}{n}.
end{eqnarray}$$
For (b), note that the stament is equivalent to
$$
F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
$$ But this is obvious from $(*)$:
$$begin{eqnarray}
sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
end{eqnarray}$$
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062863%2fsomething-about-fourier-expansion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.
$$
pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
$$
$$
pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
$$ This gives
$$
F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
$$ where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
$$begin{eqnarray}
pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
&=&2pisum_{n=1}^infty frac{b_n}{n}.
end{eqnarray}$$
For (b), note that the stament is equivalent to
$$
F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
$$ But this is obvious from $(*)$:
$$begin{eqnarray}
sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
end{eqnarray}$$
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
add a comment |
Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.
$$
pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
$$
$$
pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
$$ This gives
$$
F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
$$ where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
$$begin{eqnarray}
pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
&=&2pisum_{n=1}^infty frac{b_n}{n}.
end{eqnarray}$$
For (b), note that the stament is equivalent to
$$
F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
$$ But this is obvious from $(*)$:
$$begin{eqnarray}
sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
end{eqnarray}$$
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
add a comment |
Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.
$$
pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
$$
$$
pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
$$ This gives
$$
F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
$$ where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
$$begin{eqnarray}
pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
&=&2pisum_{n=1}^infty frac{b_n}{n}.
end{eqnarray}$$
For (b), note that the stament is equivalent to
$$
F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
$$ But this is obvious from $(*)$:
$$begin{eqnarray}
sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
end{eqnarray}$$
Let $$F(x) sim frac{c_0}{2}+sum_{n=1}^{infty}c_n cos nx +d_nsin nx.$$ Since $F$ is $2pi$-periodic $C^1$, note that the Fourier series of $F$ converges uniformly to $F$ and therefore equality holds ($alpha$-Holder continuity is one of the sufficient conditions for uniform convergence, see e.g. this earlier post). Now, we can find $c_n$ and $d_n$ as follows.
$$
pi c_n = int_{-pi}^pi F(t)cos nt dt = frac{sin nt}{n}F(t)|^{pi}_{-pi}-int_{-pi}^pi (f(t)-frac{a_0}{2})frac{sin nt}{n}dt = -pi frac{b_n}{n}, quad nneq 0,
$$
$$
pi d_n = int_{-pi}^pi F(t)sin nt dt = frac{-cos nt}{n}F(t)|^{pi}_{-pi}+int_{-pi}^pi (f(t)-frac{a_0}{2})frac{cos nt}{n}dt = pi frac{a_n}{n}.
$$ This gives
$$
F(x) = frac{c_0}{2}+sum_{n=1}^{infty}left(-frac{b_n}{n}right)cos nx +frac{a_n}{n}sin nxtag{*}.
$$ where $frac{c_0}{2} = sum_{n=1}^infty frac{b_n}{n}$ from $F(0) = 0$. It can be also calculated explicitly:
$$begin{eqnarray}
pi c_0 = int_{0}^{2pi} F(t) dt& =& (t-pi)F(t)|^{2pi}_{0}-int_{0}^{2pi}(t-pi) (f(t)-frac{a_0}{2})dt \&=&int_{0}^{2pi}left(sum_{n=1}^infty frac{2}{n}sin ntright) (f(t)-frac{a_0}{2})dt \
&=&2pisum_{n=1}^infty frac{b_n}{n}.
end{eqnarray}$$
For (b), note that the stament is equivalent to
$$
F(b) - F(a) = sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx.
$$ But this is obvious from $(*)$:
$$begin{eqnarray}
sum_{n=1}^infty int_a^b left(a_n cos nx +b_nsin nxright)dx &=&sum_{n=1}^{infty}frac{a_n}{n}(sin nb-sin na)+left(-frac{b_n}{n}right)(cos nb-cos na)\& =& F(b) - F(a).
end{eqnarray}$$
edited yesterday
answered 2 days ago
SongSong
6,050318
6,050318
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
add a comment |
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
i don’t understand this why F is $in C^1$then F is uniformly convergence
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
And the five line integration by part is wrong
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
It should be$pi c_0=tF(t)|_{-pi}^{pi}-int_{-pi}^{+pi}(f(t)-frac{a_0}{2}) dt$ and I don’t know how to proof it equal to 0
– jackson
2 days ago
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
The five line the left of $c_n$ should be $pi$?because $c_n=frac{1}{pi}int_0^{2pi}F(t)cos ntdt$ so do the next line ,am I right?
– jackson
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
You are absolutely right ... Sorry for the confusion.
– Song
yesterday
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062863%2fsomething-about-fourier-expansion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown