Find the range of p such that team A has the advantage in a best four of seven series.












0














Two teams, A and B, are playing a series of games. Assume




  1. probability that A won a game is p


  2. result of a game will not affect result of the next game
    Find the range of p such that team A has the advantage in a best four of seven series.



Wouldn't the answer simply be p>0.5? Since the probability of winning is more than 0.5, then team A should have an advantage in any series.



Can anyone confirm? Or object?



Here's my attempt using negative binomial.



enter image description here










share|cite|improve this question
























  • Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
    – lulu
    2 days ago












  • Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
    – Wade
    2 days ago










  • That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
    – lulu
    2 days ago










  • In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
    – Wade
    yesterday










  • With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
    – lulu
    yesterday
















0














Two teams, A and B, are playing a series of games. Assume




  1. probability that A won a game is p


  2. result of a game will not affect result of the next game
    Find the range of p such that team A has the advantage in a best four of seven series.



Wouldn't the answer simply be p>0.5? Since the probability of winning is more than 0.5, then team A should have an advantage in any series.



Can anyone confirm? Or object?



Here's my attempt using negative binomial.



enter image description here










share|cite|improve this question
























  • Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
    – lulu
    2 days ago












  • Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
    – Wade
    2 days ago










  • That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
    – lulu
    2 days ago










  • In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
    – Wade
    yesterday










  • With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
    – lulu
    yesterday














0












0








0







Two teams, A and B, are playing a series of games. Assume




  1. probability that A won a game is p


  2. result of a game will not affect result of the next game
    Find the range of p such that team A has the advantage in a best four of seven series.



Wouldn't the answer simply be p>0.5? Since the probability of winning is more than 0.5, then team A should have an advantage in any series.



Can anyone confirm? Or object?



Here's my attempt using negative binomial.



enter image description here










share|cite|improve this question















Two teams, A and B, are playing a series of games. Assume




  1. probability that A won a game is p


  2. result of a game will not affect result of the next game
    Find the range of p such that team A has the advantage in a best four of seven series.



Wouldn't the answer simply be p>0.5? Since the probability of winning is more than 0.5, then team A should have an advantage in any series.



Can anyone confirm? Or object?



Here's my attempt using negative binomial.



enter image description here







probability statistics negative-binomial






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Wade

















asked 2 days ago









WadeWade

179211




179211












  • Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
    – lulu
    2 days ago












  • Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
    – Wade
    2 days ago










  • That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
    – lulu
    2 days ago










  • In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
    – Wade
    yesterday










  • With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
    – lulu
    yesterday


















  • Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
    – lulu
    2 days ago












  • Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
    – Wade
    2 days ago










  • That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
    – lulu
    2 days ago










  • In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
    – Wade
    yesterday










  • With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
    – lulu
    yesterday
















Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
– lulu
2 days ago






Well, I agree with the answer but you don't really present an argument for it. What you write amounts to saying "it's true because it is true." You could, for instance, compute the probability of $A$ winning explicitly. Probably a good exercise anyway. Or you could just argue directly (looking at winning and losing paths for $A$), though if you are new to probability you might find it hard to write such an argument out clearly and completely.
– lulu
2 days ago














Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
– Wade
2 days ago




Ok, since this problem looks like a binomial type of question then the probability of team A winning 4 games out of the 7 would be [7!/(4!*3!)]*(p^4)*(1-p)^3. How could the range be found in this? Would. that probability I. just calculated be more than 0.5 and I can find the range of p from that? ex. [7!/(4!*3!)]*(p^4)*(1-p)^3 >0.5
– Wade
2 days ago












That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
– lulu
2 days ago




That's a start, but of course $A$ might win more than $4$ games out of $7$. As a first step, convince yourself that the situation is unchanged if you imagine that all $7$ games are played (even though in reality the series usually stops once one team has won $4$ games). Next compute the probability that $A$ wins $4,5,6,7$ games out of the seven.
– lulu
2 days ago












In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
– Wade
yesterday




In this question, it's assumed that the game stops when a team reaches 4 wins. In this case I tried to solve for the range of p by adding the probability (using negative binomial) that A wins 4 games after player 4, 5, 6 and 7 games. However, my answer came with the summation of p raised to various powers and it became difficult to solve.
– Wade
yesterday












With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
– lulu
yesterday




With my interpretation of the rules, which your notes confirm, it doesn't matter if the series stops or not. You get the same winner regardless. Thus you can just sum the probabilities that $A$ gets $4,5,6,7$ wins. My posted solution, though, avoids the binomial calculation entirely.
– lulu
yesterday










1 Answer
1






active

oldest

votes


















1














Note: I am interpreting the question as "assume that $A$ wins (or loses) any given game with probability $p$, independent of all other games. Find the range of $p$ such that team A has the advantage in a best four of seven series." If some other interpretation was intended, please clarify.



As a way to do the problem without significant computation, look at the various paths. Here a "path" means a sequence of game winners until one side or the other appears $4$ times. Thus possible paths would include $AAAA$, $ABAAA$,$BBABAAA$ and so on (read left to right).



We divide the set of paths in two according to whether $A$ or $B$ comes up $4$ times. Let's call the paths along which $A$ wins an $A-$path.



We note that the map which switches $A,B$ defines a bijection between the $A-$ paths and the $B-$paths. If $P$ is a path we'll let $overline P$ be the same path with $A,B$ interchanged.



Consider an $A-$path $P$. We claim that $p>.5$ implies that the probability of $P$ is greater than the probability of $overline P$. Indeed, we know that $P$ contains exactly $4$ $A's$ and $i$ $B's$ where $iin {0,1,2,3}$. Thus $$Prob(P)=p^4(1-p)^iquad Prob(overline P)=p^i(1-p)^4$$ dividing we see that $$frac {Prob(P)}{Prob(overline P)}=left(frac p{1-p}right)^{4-i}$$ and $p>.5$ implies that this is greater than $1$, so we are done.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062734%2ffind-the-range-of-p-such-that-team-a-has-the-advantage-in-a-best-four-of-seven-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Note: I am interpreting the question as "assume that $A$ wins (or loses) any given game with probability $p$, independent of all other games. Find the range of $p$ such that team A has the advantage in a best four of seven series." If some other interpretation was intended, please clarify.



    As a way to do the problem without significant computation, look at the various paths. Here a "path" means a sequence of game winners until one side or the other appears $4$ times. Thus possible paths would include $AAAA$, $ABAAA$,$BBABAAA$ and so on (read left to right).



    We divide the set of paths in two according to whether $A$ or $B$ comes up $4$ times. Let's call the paths along which $A$ wins an $A-$path.



    We note that the map which switches $A,B$ defines a bijection between the $A-$ paths and the $B-$paths. If $P$ is a path we'll let $overline P$ be the same path with $A,B$ interchanged.



    Consider an $A-$path $P$. We claim that $p>.5$ implies that the probability of $P$ is greater than the probability of $overline P$. Indeed, we know that $P$ contains exactly $4$ $A's$ and $i$ $B's$ where $iin {0,1,2,3}$. Thus $$Prob(P)=p^4(1-p)^iquad Prob(overline P)=p^i(1-p)^4$$ dividing we see that $$frac {Prob(P)}{Prob(overline P)}=left(frac p{1-p}right)^{4-i}$$ and $p>.5$ implies that this is greater than $1$, so we are done.






    share|cite|improve this answer




























      1














      Note: I am interpreting the question as "assume that $A$ wins (or loses) any given game with probability $p$, independent of all other games. Find the range of $p$ such that team A has the advantage in a best four of seven series." If some other interpretation was intended, please clarify.



      As a way to do the problem without significant computation, look at the various paths. Here a "path" means a sequence of game winners until one side or the other appears $4$ times. Thus possible paths would include $AAAA$, $ABAAA$,$BBABAAA$ and so on (read left to right).



      We divide the set of paths in two according to whether $A$ or $B$ comes up $4$ times. Let's call the paths along which $A$ wins an $A-$path.



      We note that the map which switches $A,B$ defines a bijection between the $A-$ paths and the $B-$paths. If $P$ is a path we'll let $overline P$ be the same path with $A,B$ interchanged.



      Consider an $A-$path $P$. We claim that $p>.5$ implies that the probability of $P$ is greater than the probability of $overline P$. Indeed, we know that $P$ contains exactly $4$ $A's$ and $i$ $B's$ where $iin {0,1,2,3}$. Thus $$Prob(P)=p^4(1-p)^iquad Prob(overline P)=p^i(1-p)^4$$ dividing we see that $$frac {Prob(P)}{Prob(overline P)}=left(frac p{1-p}right)^{4-i}$$ and $p>.5$ implies that this is greater than $1$, so we are done.






      share|cite|improve this answer


























        1












        1








        1






        Note: I am interpreting the question as "assume that $A$ wins (or loses) any given game with probability $p$, independent of all other games. Find the range of $p$ such that team A has the advantage in a best four of seven series." If some other interpretation was intended, please clarify.



        As a way to do the problem without significant computation, look at the various paths. Here a "path" means a sequence of game winners until one side or the other appears $4$ times. Thus possible paths would include $AAAA$, $ABAAA$,$BBABAAA$ and so on (read left to right).



        We divide the set of paths in two according to whether $A$ or $B$ comes up $4$ times. Let's call the paths along which $A$ wins an $A-$path.



        We note that the map which switches $A,B$ defines a bijection between the $A-$ paths and the $B-$paths. If $P$ is a path we'll let $overline P$ be the same path with $A,B$ interchanged.



        Consider an $A-$path $P$. We claim that $p>.5$ implies that the probability of $P$ is greater than the probability of $overline P$. Indeed, we know that $P$ contains exactly $4$ $A's$ and $i$ $B's$ where $iin {0,1,2,3}$. Thus $$Prob(P)=p^4(1-p)^iquad Prob(overline P)=p^i(1-p)^4$$ dividing we see that $$frac {Prob(P)}{Prob(overline P)}=left(frac p{1-p}right)^{4-i}$$ and $p>.5$ implies that this is greater than $1$, so we are done.






        share|cite|improve this answer














        Note: I am interpreting the question as "assume that $A$ wins (or loses) any given game with probability $p$, independent of all other games. Find the range of $p$ such that team A has the advantage in a best four of seven series." If some other interpretation was intended, please clarify.



        As a way to do the problem without significant computation, look at the various paths. Here a "path" means a sequence of game winners until one side or the other appears $4$ times. Thus possible paths would include $AAAA$, $ABAAA$,$BBABAAA$ and so on (read left to right).



        We divide the set of paths in two according to whether $A$ or $B$ comes up $4$ times. Let's call the paths along which $A$ wins an $A-$path.



        We note that the map which switches $A,B$ defines a bijection between the $A-$ paths and the $B-$paths. If $P$ is a path we'll let $overline P$ be the same path with $A,B$ interchanged.



        Consider an $A-$path $P$. We claim that $p>.5$ implies that the probability of $P$ is greater than the probability of $overline P$. Indeed, we know that $P$ contains exactly $4$ $A's$ and $i$ $B's$ where $iin {0,1,2,3}$. Thus $$Prob(P)=p^4(1-p)^iquad Prob(overline P)=p^i(1-p)^4$$ dividing we see that $$frac {Prob(P)}{Prob(overline P)}=left(frac p{1-p}right)^{4-i}$$ and $p>.5$ implies that this is greater than $1$, so we are done.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered 2 days ago









        lulululu

        39.2k24677




        39.2k24677






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062734%2ffind-the-range-of-p-such-that-team-a-has-the-advantage-in-a-best-four-of-seven-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?