Normal distribution confidence intervals and sample standard deviation problem
I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.
I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$
$n_i$ is the sample size corresponding to sample mean $x_i$
$x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$
$x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$
$d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$
But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$
This implies
$d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$
This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$
This result does not make sense in reality.
real-analysis probability-theory
add a comment |
I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.
I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$
$n_i$ is the sample size corresponding to sample mean $x_i$
$x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$
$x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$
$d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$
But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$
This implies
$d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$
This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$
This result does not make sense in reality.
real-analysis probability-theory
add a comment |
I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.
I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$
$n_i$ is the sample size corresponding to sample mean $x_i$
$x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$
$x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$
$d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$
But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$
This implies
$d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$
This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$
This result does not make sense in reality.
real-analysis probability-theory
I am confused by this relationship that in a normal distribution of sample means $x_i : x_i$~$N(mu,sigma)$ the sample mean $x_i$ is within $2$ standard deviations of the true mean $mu$ with $95$% confidence.
I am confused because of this second relationship that $sigma approx frac{sigma_i}{sqrt{n_i-1}}$
$n_i$ is the sample size corresponding to sample mean $x_i$
$x_1in B(mu,2sigma):sigmaapproxfrac{sigma_1}{sqrt{n_1-1}}rightarrow$$d(x_1,mu)leqmu+2sigma-(mu-2sigma)=4sigmaapprox4frac{sigma_1}{sqrt{n_1-1}}$
$x_2in B(mu,2sigma):sigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow d(x_2,mu)leq4frac{sigma_2}{sqrt{n_2-1}}$
$d(x_1,x_2)leq d(x_1,mu)+d(x_2,mu)leq 4frac{sigma_1}{sqrt{n_1-1}}+4frac{sigma_2}{sqrt{n_2-1}}$
But, $frac{sigma_1}{sqrt{n_1-1}}approxsigmaapproxfrac{sigma_2}{sqrt{n_2-1}}rightarrow frac{sigma_1}{sqrt{n_1-1}}approxfrac{sigma_2}{sqrt{n_2-1}}$
This implies
$d(x_1,x_2)leq 4(frac{sigma_1}{sqrt{n_1-1}}+frac{sigma_1}{sqrt{n_1-1}})= 8frac{sigma_1}{sqrt{n_1-1}}$
This implies that for any $n_2$, if $n_1$ is very large, $d(x_1,x_2)leq0$
This result does not make sense in reality.
real-analysis probability-theory
real-analysis probability-theory
asked 11 mins ago
Frank
15010
15010
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061397%2fnormal-distribution-confidence-intervals-and-sample-standard-deviation-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061397%2fnormal-distribution-confidence-intervals-and-sample-standard-deviation-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown