Prove that $langlemathbf{A}, mathbf{C}rangle leq delta$ equals with $|mathbf{A}|_*leqdelta$
$begingroup$
Given an arbitrary matrix $mathbf{A}in R^{ntimes n}$ and the basis matrix set $mathbb{S}={mathbf{C}in R^{ntimes n}: mathbf{C}^Tmathbf{C}=mathbf{I}_n}$. Then how to prove:
1:If we have $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$ then it holds that $|mathbf{A}|_*leqdelta$.
2:Also, if we have $|mathbf{A}|_*leqdelta$, then we obtain $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$.
In the question, $|mathbf{A}|_*$ is the nuclear norm, and $langlemathbf{A}, mathbf{C}rangle = operatorname{Tr} (mathbf{A}^Tmathbf{C})$.
calculus linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
Given an arbitrary matrix $mathbf{A}in R^{ntimes n}$ and the basis matrix set $mathbb{S}={mathbf{C}in R^{ntimes n}: mathbf{C}^Tmathbf{C}=mathbf{I}_n}$. Then how to prove:
1:If we have $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$ then it holds that $|mathbf{A}|_*leqdelta$.
2:Also, if we have $|mathbf{A}|_*leqdelta$, then we obtain $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$.
In the question, $|mathbf{A}|_*$ is the nuclear norm, and $langlemathbf{A}, mathbf{C}rangle = operatorname{Tr} (mathbf{A}^Tmathbf{C})$.
calculus linear-algebra matrices
$endgroup$
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17
add a comment |
$begingroup$
Given an arbitrary matrix $mathbf{A}in R^{ntimes n}$ and the basis matrix set $mathbb{S}={mathbf{C}in R^{ntimes n}: mathbf{C}^Tmathbf{C}=mathbf{I}_n}$. Then how to prove:
1:If we have $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$ then it holds that $|mathbf{A}|_*leqdelta$.
2:Also, if we have $|mathbf{A}|_*leqdelta$, then we obtain $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$.
In the question, $|mathbf{A}|_*$ is the nuclear norm, and $langlemathbf{A}, mathbf{C}rangle = operatorname{Tr} (mathbf{A}^Tmathbf{C})$.
calculus linear-algebra matrices
$endgroup$
Given an arbitrary matrix $mathbf{A}in R^{ntimes n}$ and the basis matrix set $mathbb{S}={mathbf{C}in R^{ntimes n}: mathbf{C}^Tmathbf{C}=mathbf{I}_n}$. Then how to prove:
1:If we have $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$ then it holds that $|mathbf{A}|_*leqdelta$.
2:Also, if we have $|mathbf{A}|_*leqdelta$, then we obtain $langlemathbf{A}, mathbf{C}rangle leq delta$ for all $mathbf{C}subsetmathbb{S}$.
In the question, $|mathbf{A}|_*$ is the nuclear norm, and $langlemathbf{A}, mathbf{C}rangle = operatorname{Tr} (mathbf{A}^Tmathbf{C})$.
calculus linear-algebra matrices
calculus linear-algebra matrices
edited Jan 22 at 12:17
olivia
asked Jan 21 at 9:06
oliviaolivia
791616
791616
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17
add a comment |
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can use the polar decomposition
$$
A=Psqrt{A^*A}
$$ where $sqrt{A^*A}$ is positive semi-definite and $P$ is orthogonal, i.e. $PP^T=P^TP=I$. Note that $text{tr}(AB)=text{tr}(BA)$ and $text{tr}(A)=text{tr}(A^T)$ hold for any $ntimes n$ real matrices $A,B$.
1. We can take $B=P$ and it follows
$$
|A|_*=text{tr}(sqrt{A^*A})=text{tr}(B^TPsqrt{A^*A})=text{tr}(Psqrt{A^*A}B^T)=text{tr}(AB^T)=langle A,Brangle le delta.
$$
2. We have $$begin{eqnarray}langle A,Brangle &=&text{tr}(AB^T)\&=&text{tr}(Psqrt{A^*A}B^T)\&=&text{tr}(B^TPsqrt{A^*A})=text{tr}(tilde{B}sqrt{A^*A})end{eqnarray}$$ where $tilde{B}=B^TP$ is an orthogonal matrix. Since $(I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)$ is positive semi-definite, we have
$$
text{tr}left((I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)right)ge 0.
$$ This leads to
$$
text{tr}left(tilde{B}sqrt{A^*A}right)+text{tr}left(sqrt{A^*A}tilde{B}^Tright)letext{tr}left(sqrt{A^*A}right)+text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright).
$$ Since $$text{tr}left(sqrt{A^*A}tilde{B}^Tright)=text{tr}left((tilde{B}^T)^Tsqrt{A^*A}^Tright)=text{tr}left(tilde{B}sqrt{A^*A}right)$$ and $$text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright)=text{tr}left(tilde{B}^Ttilde{B}sqrt{A^*A}right)=text{tr}left(sqrt{A^*A}right),$$
it follows$$
langle A,Brangle=text{tr}left(sqrt{A^*A}tilde{B}^Tright)le text{tr}left(sqrt{A^*A}right)=|A|_*le delta.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081655%2fprove-that-langle-mathbfa-mathbfc-rangle-leq-delta-equals-with-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can use the polar decomposition
$$
A=Psqrt{A^*A}
$$ where $sqrt{A^*A}$ is positive semi-definite and $P$ is orthogonal, i.e. $PP^T=P^TP=I$. Note that $text{tr}(AB)=text{tr}(BA)$ and $text{tr}(A)=text{tr}(A^T)$ hold for any $ntimes n$ real matrices $A,B$.
1. We can take $B=P$ and it follows
$$
|A|_*=text{tr}(sqrt{A^*A})=text{tr}(B^TPsqrt{A^*A})=text{tr}(Psqrt{A^*A}B^T)=text{tr}(AB^T)=langle A,Brangle le delta.
$$
2. We have $$begin{eqnarray}langle A,Brangle &=&text{tr}(AB^T)\&=&text{tr}(Psqrt{A^*A}B^T)\&=&text{tr}(B^TPsqrt{A^*A})=text{tr}(tilde{B}sqrt{A^*A})end{eqnarray}$$ where $tilde{B}=B^TP$ is an orthogonal matrix. Since $(I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)$ is positive semi-definite, we have
$$
text{tr}left((I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)right)ge 0.
$$ This leads to
$$
text{tr}left(tilde{B}sqrt{A^*A}right)+text{tr}left(sqrt{A^*A}tilde{B}^Tright)letext{tr}left(sqrt{A^*A}right)+text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright).
$$ Since $$text{tr}left(sqrt{A^*A}tilde{B}^Tright)=text{tr}left((tilde{B}^T)^Tsqrt{A^*A}^Tright)=text{tr}left(tilde{B}sqrt{A^*A}right)$$ and $$text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright)=text{tr}left(tilde{B}^Ttilde{B}sqrt{A^*A}right)=text{tr}left(sqrt{A^*A}right),$$
it follows$$
langle A,Brangle=text{tr}left(sqrt{A^*A}tilde{B}^Tright)le text{tr}left(sqrt{A^*A}right)=|A|_*le delta.
$$
$endgroup$
add a comment |
$begingroup$
We can use the polar decomposition
$$
A=Psqrt{A^*A}
$$ where $sqrt{A^*A}$ is positive semi-definite and $P$ is orthogonal, i.e. $PP^T=P^TP=I$. Note that $text{tr}(AB)=text{tr}(BA)$ and $text{tr}(A)=text{tr}(A^T)$ hold for any $ntimes n$ real matrices $A,B$.
1. We can take $B=P$ and it follows
$$
|A|_*=text{tr}(sqrt{A^*A})=text{tr}(B^TPsqrt{A^*A})=text{tr}(Psqrt{A^*A}B^T)=text{tr}(AB^T)=langle A,Brangle le delta.
$$
2. We have $$begin{eqnarray}langle A,Brangle &=&text{tr}(AB^T)\&=&text{tr}(Psqrt{A^*A}B^T)\&=&text{tr}(B^TPsqrt{A^*A})=text{tr}(tilde{B}sqrt{A^*A})end{eqnarray}$$ where $tilde{B}=B^TP$ is an orthogonal matrix. Since $(I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)$ is positive semi-definite, we have
$$
text{tr}left((I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)right)ge 0.
$$ This leads to
$$
text{tr}left(tilde{B}sqrt{A^*A}right)+text{tr}left(sqrt{A^*A}tilde{B}^Tright)letext{tr}left(sqrt{A^*A}right)+text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright).
$$ Since $$text{tr}left(sqrt{A^*A}tilde{B}^Tright)=text{tr}left((tilde{B}^T)^Tsqrt{A^*A}^Tright)=text{tr}left(tilde{B}sqrt{A^*A}right)$$ and $$text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright)=text{tr}left(tilde{B}^Ttilde{B}sqrt{A^*A}right)=text{tr}left(sqrt{A^*A}right),$$
it follows$$
langle A,Brangle=text{tr}left(sqrt{A^*A}tilde{B}^Tright)le text{tr}left(sqrt{A^*A}right)=|A|_*le delta.
$$
$endgroup$
add a comment |
$begingroup$
We can use the polar decomposition
$$
A=Psqrt{A^*A}
$$ where $sqrt{A^*A}$ is positive semi-definite and $P$ is orthogonal, i.e. $PP^T=P^TP=I$. Note that $text{tr}(AB)=text{tr}(BA)$ and $text{tr}(A)=text{tr}(A^T)$ hold for any $ntimes n$ real matrices $A,B$.
1. We can take $B=P$ and it follows
$$
|A|_*=text{tr}(sqrt{A^*A})=text{tr}(B^TPsqrt{A^*A})=text{tr}(Psqrt{A^*A}B^T)=text{tr}(AB^T)=langle A,Brangle le delta.
$$
2. We have $$begin{eqnarray}langle A,Brangle &=&text{tr}(AB^T)\&=&text{tr}(Psqrt{A^*A}B^T)\&=&text{tr}(B^TPsqrt{A^*A})=text{tr}(tilde{B}sqrt{A^*A})end{eqnarray}$$ where $tilde{B}=B^TP$ is an orthogonal matrix. Since $(I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)$ is positive semi-definite, we have
$$
text{tr}left((I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)right)ge 0.
$$ This leads to
$$
text{tr}left(tilde{B}sqrt{A^*A}right)+text{tr}left(sqrt{A^*A}tilde{B}^Tright)letext{tr}left(sqrt{A^*A}right)+text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright).
$$ Since $$text{tr}left(sqrt{A^*A}tilde{B}^Tright)=text{tr}left((tilde{B}^T)^Tsqrt{A^*A}^Tright)=text{tr}left(tilde{B}sqrt{A^*A}right)$$ and $$text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright)=text{tr}left(tilde{B}^Ttilde{B}sqrt{A^*A}right)=text{tr}left(sqrt{A^*A}right),$$
it follows$$
langle A,Brangle=text{tr}left(sqrt{A^*A}tilde{B}^Tright)le text{tr}left(sqrt{A^*A}right)=|A|_*le delta.
$$
$endgroup$
We can use the polar decomposition
$$
A=Psqrt{A^*A}
$$ where $sqrt{A^*A}$ is positive semi-definite and $P$ is orthogonal, i.e. $PP^T=P^TP=I$. Note that $text{tr}(AB)=text{tr}(BA)$ and $text{tr}(A)=text{tr}(A^T)$ hold for any $ntimes n$ real matrices $A,B$.
1. We can take $B=P$ and it follows
$$
|A|_*=text{tr}(sqrt{A^*A})=text{tr}(B^TPsqrt{A^*A})=text{tr}(Psqrt{A^*A}B^T)=text{tr}(AB^T)=langle A,Brangle le delta.
$$
2. We have $$begin{eqnarray}langle A,Brangle &=&text{tr}(AB^T)\&=&text{tr}(Psqrt{A^*A}B^T)\&=&text{tr}(B^TPsqrt{A^*A})=text{tr}(tilde{B}sqrt{A^*A})end{eqnarray}$$ where $tilde{B}=B^TP$ is an orthogonal matrix. Since $(I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)$ is positive semi-definite, we have
$$
text{tr}left((I-tilde{B})sqrt{A^*A}(I-tilde{B}^T)right)ge 0.
$$ This leads to
$$
text{tr}left(tilde{B}sqrt{A^*A}right)+text{tr}left(sqrt{A^*A}tilde{B}^Tright)letext{tr}left(sqrt{A^*A}right)+text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright).
$$ Since $$text{tr}left(sqrt{A^*A}tilde{B}^Tright)=text{tr}left((tilde{B}^T)^Tsqrt{A^*A}^Tright)=text{tr}left(tilde{B}sqrt{A^*A}right)$$ and $$text{tr}left(tilde{B}sqrt{A^*A}tilde{B}^Tright)=text{tr}left(tilde{B}^Ttilde{B}sqrt{A^*A}right)=text{tr}left(sqrt{A^*A}right),$$
it follows$$
langle A,Brangle=text{tr}left(sqrt{A^*A}tilde{B}^Tright)le text{tr}left(sqrt{A^*A}right)=|A|_*le delta.
$$
answered Jan 21 at 9:54
SongSong
14.4k1635
14.4k1635
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081655%2fprove-that-langle-mathbfa-mathbfc-rangle-leq-delta-equals-with-ma%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@OmG, nuclear norm, see the last line of the question
$endgroup$
– pointguard0
Jan 21 at 9:17