Prove by the integral definition that total curvature of lemniscate is $0$.
$begingroup$
Let for an arc-lenght parametrized curve $gamma$ its total curvature is given by:
$$T_gamma=intkappa(s)ds$$
but, by the chain rule, we can see that:
$$T_gamma=intkappa(t)frac{ds}{dt}dt$$
I choose to use the polar form of the lemniscate $r^2=cos(2t)$ and I arrived to:
$$dot{r}^2=tan(2t)sin(2t)$$
$$rddot{r}=-cos(2t)[sec^2(2t)+1]$$
In the other hand, the curvature in polar coordinates is given by:
$$kappa(t)=frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}$$
so we have:
$$T_gamma=int_{0}^{2pi}frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}(r^2+dot{r}^2)^{1/2}dt=int_{0}^{2pi}frac{cos(2t)+2tan(2t)sin(2t)+cos(2t)[sec^2(2t)+1]}{cos(2t)+tan(2t)sin(2t)}dt$$
but when I perform the integral it results in $6pi$, but that cannot be, because the rotation index of lemniscate is 0, so its total curvature must vanish. Where are my mistake? Can you please help me to derive this result. I've been thinking that maybe my definition of total curvature must change when I use polar coordinates but I cannot find information. Thanks in advantaged.
differential-geometry curvature
$endgroup$
add a comment |
$begingroup$
Let for an arc-lenght parametrized curve $gamma$ its total curvature is given by:
$$T_gamma=intkappa(s)ds$$
but, by the chain rule, we can see that:
$$T_gamma=intkappa(t)frac{ds}{dt}dt$$
I choose to use the polar form of the lemniscate $r^2=cos(2t)$ and I arrived to:
$$dot{r}^2=tan(2t)sin(2t)$$
$$rddot{r}=-cos(2t)[sec^2(2t)+1]$$
In the other hand, the curvature in polar coordinates is given by:
$$kappa(t)=frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}$$
so we have:
$$T_gamma=int_{0}^{2pi}frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}(r^2+dot{r}^2)^{1/2}dt=int_{0}^{2pi}frac{cos(2t)+2tan(2t)sin(2t)+cos(2t)[sec^2(2t)+1]}{cos(2t)+tan(2t)sin(2t)}dt$$
but when I perform the integral it results in $6pi$, but that cannot be, because the rotation index of lemniscate is 0, so its total curvature must vanish. Where are my mistake? Can you please help me to derive this result. I've been thinking that maybe my definition of total curvature must change when I use polar coordinates but I cannot find information. Thanks in advantaged.
differential-geometry curvature
$endgroup$
1
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
1
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31
add a comment |
$begingroup$
Let for an arc-lenght parametrized curve $gamma$ its total curvature is given by:
$$T_gamma=intkappa(s)ds$$
but, by the chain rule, we can see that:
$$T_gamma=intkappa(t)frac{ds}{dt}dt$$
I choose to use the polar form of the lemniscate $r^2=cos(2t)$ and I arrived to:
$$dot{r}^2=tan(2t)sin(2t)$$
$$rddot{r}=-cos(2t)[sec^2(2t)+1]$$
In the other hand, the curvature in polar coordinates is given by:
$$kappa(t)=frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}$$
so we have:
$$T_gamma=int_{0}^{2pi}frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}(r^2+dot{r}^2)^{1/2}dt=int_{0}^{2pi}frac{cos(2t)+2tan(2t)sin(2t)+cos(2t)[sec^2(2t)+1]}{cos(2t)+tan(2t)sin(2t)}dt$$
but when I perform the integral it results in $6pi$, but that cannot be, because the rotation index of lemniscate is 0, so its total curvature must vanish. Where are my mistake? Can you please help me to derive this result. I've been thinking that maybe my definition of total curvature must change when I use polar coordinates but I cannot find information. Thanks in advantaged.
differential-geometry curvature
$endgroup$
Let for an arc-lenght parametrized curve $gamma$ its total curvature is given by:
$$T_gamma=intkappa(s)ds$$
but, by the chain rule, we can see that:
$$T_gamma=intkappa(t)frac{ds}{dt}dt$$
I choose to use the polar form of the lemniscate $r^2=cos(2t)$ and I arrived to:
$$dot{r}^2=tan(2t)sin(2t)$$
$$rddot{r}=-cos(2t)[sec^2(2t)+1]$$
In the other hand, the curvature in polar coordinates is given by:
$$kappa(t)=frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}$$
so we have:
$$T_gamma=int_{0}^{2pi}frac{r^2+2dot{r}^2-rddot{r}}{(r^2+dot{r}^2)^{3/2}}(r^2+dot{r}^2)^{1/2}dt=int_{0}^{2pi}frac{cos(2t)+2tan(2t)sin(2t)+cos(2t)[sec^2(2t)+1]}{cos(2t)+tan(2t)sin(2t)}dt$$
but when I perform the integral it results in $6pi$, but that cannot be, because the rotation index of lemniscate is 0, so its total curvature must vanish. Where are my mistake? Can you please help me to derive this result. I've been thinking that maybe my definition of total curvature must change when I use polar coordinates but I cannot find information. Thanks in advantaged.
differential-geometry curvature
differential-geometry curvature
edited Jan 21 at 16:12
Raskolnikov
12.6k23571
12.6k23571
asked Jan 21 at 7:56
Ragnar1204Ragnar1204
534416
534416
1
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
1
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31
add a comment |
1
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
1
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31
1
1
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
1
1
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081620%2fprove-by-the-integral-definition-that-total-curvature-of-lemniscate-is-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081620%2fprove-by-the-integral-definition-that-total-curvature-of-lemniscate-is-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Isn't the problem that the polar form of the lemniscate makes sense for those values of $t$ such that $cos(2t)geq0$ but your integral works for all values of $t$?
$endgroup$
– Raskolnikov
Jan 21 at 16:24
1
$begingroup$
In other words, your polar form is simply not an arc-length parametrization as required by your initial definition of the curvature.
$endgroup$
– Raskolnikov
Jan 21 at 16:31