How to prove this closed formula for Cantor set?
$begingroup$
Let $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
Theorem: $$C_n=bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]$$
I have tried to prove this assertion by induction on $n$, but to no avail. I am stuck at inductive step.
Please shed me some light to accomplish the proof. Thank you so much!
My attempt:
The formula is trivially true for $n=0$. Let it hold for $n$.
$$C_{n+1}=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)$$
$$=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)$$
cantor-set
$endgroup$
add a comment |
$begingroup$
Let $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
Theorem: $$C_n=bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]$$
I have tried to prove this assertion by induction on $n$, but to no avail. I am stuck at inductive step.
Please shed me some light to accomplish the proof. Thank you so much!
My attempt:
The formula is trivially true for $n=0$. Let it hold for $n$.
$$C_{n+1}=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)$$
$$=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)$$
cantor-set
$endgroup$
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44
add a comment |
$begingroup$
Let $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
Theorem: $$C_n=bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]$$
I have tried to prove this assertion by induction on $n$, but to no avail. I am stuck at inductive step.
Please shed me some light to accomplish the proof. Thank you so much!
My attempt:
The formula is trivially true for $n=0$. Let it hold for $n$.
$$C_{n+1}=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)$$
$$=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)$$
cantor-set
$endgroup$
Let $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
Theorem: $$C_n=bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]$$
I have tried to prove this assertion by induction on $n$, but to no avail. I am stuck at inductive step.
Please shed me some light to accomplish the proof. Thank you so much!
My attempt:
The formula is trivially true for $n=0$. Let it hold for $n$.
$$C_{n+1}=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)$$
$$=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)$$
$$=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)$$
cantor-set
cantor-set
edited Jan 23 at 6:07
Le Anh Dung
asked Jan 21 at 9:52
Le Anh DungLe Anh Dung
1,2131621
1,2131621
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44
add a comment |
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Notice that
$$bigcap_{m=0}^{n+1}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]=left(bigcap_{m=0}^{n}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right)cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]\=C_ncap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$$
We may notice that if we divide the interval $[0,1]$ into $3^{n+1}$ parts we will get $[0,frac{1}{3^{n+1}}],ldots,[frac{3^{n+1}-1}{3^{n+1}},1]$.
$bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$ is just taking the even parts of the list together, notice that $C_{n+1}subseteq bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]cap C_n$, now notice that the even intervals of this stage are always the first and last thirds of the even intervals of the previous stages, so if $xin C_n$, it had to be in the form $0.d_1d_2ldots_3$ where $iin {1,2,ldots, n-1}$ implies $d_iin{0,2}$, or in other words $xin[0.d_1ldots d_{n-1}0_3,0.d_1ldots d_{n-1}2_3]$, $d_n$ will be $0$ on the first third and $2$ on the last third, so $C_n cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]subseteq C_{n+1}$
$endgroup$
add a comment |
$begingroup$
After several hours of thinking, I have figured out a proof and posted it here as an answer.
Lemma: $$2 . leftlfloor frac{3^{m}}{2}rightrfloor = 3^m-1$$
Proof:
We prove this assertion by induction on $n$. The statement is trivially true for $n=0$. Let it hold for $n$.
$2 . leftlfloor dfrac{3^{m+1}}{2}rightrfloor = 2 . leftlfloor dfrac{2.3^{m}+3^m}{2}rightrfloor=2 . leftlfloor 3^m+ dfrac{3^m}{2}rightrfloor=2left(3^m+leftlfloor dfrac{3^{m}}{2}rightrfloorright)=$ $2.3^m+2 . leftlfloor dfrac{3^{m}}{2}rightrfloor$ $=2.3^m+(3^m-1)=3^{m+1}-1$. This completes the proof.
The formula is trivially true for $n=0$. Let it hold for $n$.
$begin{align}C_{n+1} &=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)\ &=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)\ &=left(bigcap_{t=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{t-1}}{2}rightrfloor}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right) cup left(bigcap_{t=1}^{n+1}bigcup_{k=3^{t-1}}^{leftlfloor frac{3^{t-1}}{2}rightrfloor+3^{t-1}}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right)
text{ Let }t=m+1\ &=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) text{ Let }m=tend{align}$
We have some observations.
1.
$bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=left[0,frac{1}{3}right]$.
2.
$frac{1}{3}<frac{2k}{3^{m}}$ and $frac{2k+1}{3^{m}}<frac{2}{3}$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. Then $left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. It follows that $bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ and thus $left(bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) =emptyset$.
3.
From 1. and 2., we get
$begin{align}bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] &= bigcap_{m=1}^{n+1} left[left( bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor+1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) right]\&=bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
4.
$2 left(leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1} right)=2 left(leftlfloor frac{3^{m-1}}{2}rightrfloorright)+2.3^{m-1}=(3^{m-1}-1)+2.3^{m-1}=3.3^{m-1}-1=$ $3^m-1=2 . leftlfloor frac{3^{m}}{2}rightrfloor$. Hence $leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}=leftlfloor frac{3^{m}}{2}rightrfloor$.
As a result,
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right)$$
Let $I_m^k=left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$.
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1} I_m^k right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor} I_m^k right)$$
$frac{2k+1}{3^{m}}<frac{2}{3}$ for all $k le 3^{m-1}-1$ and $frac{2}{3} le frac{2k}{3^{m}}$ for all $k ge 3^{m-1}$ $implies$ $left(bigcup_{k=0}^{3^{m_1-1}-1} I_m^kright) cap left( bigcup_{k=3^{m_2-1}}^{leftlfloor frac{3^{m_2}}{2}rightrfloor} I_m^k right) =emptyset$ for all $m_1,m_2 le n+1$.
Lemma: Let $I_n= {iinBbb N mid 0 le i le n}$ and $(A_i mid iin I_n)$, $(B_i mid iin I_n)$ be collections of nonempty sets such that $A_i cap B_j =emptyset$ for all $i,jin I_n$. Then $$left(bigcap_{iin I_n} A_i right) cup left(bigcap_{iin I_n} B_iright)= bigcap_{iin I_n} (A_icup B_i)$$
Proof: It is easy to verify this lemma.
We apply this lemma for $C_{n+1}$ and get $$C_{n+1}=bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$$
First, $C_{n+1} subseteq [0,1]$ and thus $C_{n+1}=C_{n+1} cap [0,1]$.
Second, $bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] =[0,1]$.
As a result,
$begin{align}C_{n+1}&=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap [0,1]\&= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right)\&=bigcap_{m=0}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
This completes the proof.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081687%2fhow-to-prove-this-closed-formula-for-cantor-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that
$$bigcap_{m=0}^{n+1}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]=left(bigcap_{m=0}^{n}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right)cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]\=C_ncap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$$
We may notice that if we divide the interval $[0,1]$ into $3^{n+1}$ parts we will get $[0,frac{1}{3^{n+1}}],ldots,[frac{3^{n+1}-1}{3^{n+1}},1]$.
$bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$ is just taking the even parts of the list together, notice that $C_{n+1}subseteq bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]cap C_n$, now notice that the even intervals of this stage are always the first and last thirds of the even intervals of the previous stages, so if $xin C_n$, it had to be in the form $0.d_1d_2ldots_3$ where $iin {1,2,ldots, n-1}$ implies $d_iin{0,2}$, or in other words $xin[0.d_1ldots d_{n-1}0_3,0.d_1ldots d_{n-1}2_3]$, $d_n$ will be $0$ on the first third and $2$ on the last third, so $C_n cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]subseteq C_{n+1}$
$endgroup$
add a comment |
$begingroup$
Notice that
$$bigcap_{m=0}^{n+1}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]=left(bigcap_{m=0}^{n}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right)cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]\=C_ncap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$$
We may notice that if we divide the interval $[0,1]$ into $3^{n+1}$ parts we will get $[0,frac{1}{3^{n+1}}],ldots,[frac{3^{n+1}-1}{3^{n+1}},1]$.
$bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$ is just taking the even parts of the list together, notice that $C_{n+1}subseteq bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]cap C_n$, now notice that the even intervals of this stage are always the first and last thirds of the even intervals of the previous stages, so if $xin C_n$, it had to be in the form $0.d_1d_2ldots_3$ where $iin {1,2,ldots, n-1}$ implies $d_iin{0,2}$, or in other words $xin[0.d_1ldots d_{n-1}0_3,0.d_1ldots d_{n-1}2_3]$, $d_n$ will be $0$ on the first third and $2$ on the last third, so $C_n cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]subseteq C_{n+1}$
$endgroup$
add a comment |
$begingroup$
Notice that
$$bigcap_{m=0}^{n+1}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]=left(bigcap_{m=0}^{n}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right)cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]\=C_ncap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$$
We may notice that if we divide the interval $[0,1]$ into $3^{n+1}$ parts we will get $[0,frac{1}{3^{n+1}}],ldots,[frac{3^{n+1}-1}{3^{n+1}},1]$.
$bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$ is just taking the even parts of the list together, notice that $C_{n+1}subseteq bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]cap C_n$, now notice that the even intervals of this stage are always the first and last thirds of the even intervals of the previous stages, so if $xin C_n$, it had to be in the form $0.d_1d_2ldots_3$ where $iin {1,2,ldots, n-1}$ implies $d_iin{0,2}$, or in other words $xin[0.d_1ldots d_{n-1}0_3,0.d_1ldots d_{n-1}2_3]$, $d_n$ will be $0$ on the first third and $2$ on the last third, so $C_n cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]subseteq C_{n+1}$
$endgroup$
Notice that
$$bigcap_{m=0}^{n+1}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]=left(bigcap_{m=0}^{n}bigcup_{k=0}^{lfloor 3^m/2rfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right)cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]\=C_ncap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$$
We may notice that if we divide the interval $[0,1]$ into $3^{n+1}$ parts we will get $[0,frac{1}{3^{n+1}}],ldots,[frac{3^{n+1}-1}{3^{n+1}},1]$.
$bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]$ is just taking the even parts of the list together, notice that $C_{n+1}subseteq bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]cap C_n$, now notice that the even intervals of this stage are always the first and last thirds of the even intervals of the previous stages, so if $xin C_n$, it had to be in the form $0.d_1d_2ldots_3$ where $iin {1,2,ldots, n-1}$ implies $d_iin{0,2}$, or in other words $xin[0.d_1ldots d_{n-1}0_3,0.d_1ldots d_{n-1}2_3]$, $d_n$ will be $0$ on the first third and $2$ on the last third, so $C_n cap bigcup_{k=0}^{lfloor 3^{n+1}/2rfloor}left[frac{2k}{3^{n+1}},frac{2k+1}{3^{n+1}}right]subseteq C_{n+1}$
edited Jan 23 at 16:03
answered Jan 22 at 15:14
HoloHolo
5,75421131
5,75421131
add a comment |
add a comment |
$begingroup$
After several hours of thinking, I have figured out a proof and posted it here as an answer.
Lemma: $$2 . leftlfloor frac{3^{m}}{2}rightrfloor = 3^m-1$$
Proof:
We prove this assertion by induction on $n$. The statement is trivially true for $n=0$. Let it hold for $n$.
$2 . leftlfloor dfrac{3^{m+1}}{2}rightrfloor = 2 . leftlfloor dfrac{2.3^{m}+3^m}{2}rightrfloor=2 . leftlfloor 3^m+ dfrac{3^m}{2}rightrfloor=2left(3^m+leftlfloor dfrac{3^{m}}{2}rightrfloorright)=$ $2.3^m+2 . leftlfloor dfrac{3^{m}}{2}rightrfloor$ $=2.3^m+(3^m-1)=3^{m+1}-1$. This completes the proof.
The formula is trivially true for $n=0$. Let it hold for $n$.
$begin{align}C_{n+1} &=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)\ &=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)\ &=left(bigcap_{t=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{t-1}}{2}rightrfloor}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right) cup left(bigcap_{t=1}^{n+1}bigcup_{k=3^{t-1}}^{leftlfloor frac{3^{t-1}}{2}rightrfloor+3^{t-1}}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right)
text{ Let }t=m+1\ &=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) text{ Let }m=tend{align}$
We have some observations.
1.
$bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=left[0,frac{1}{3}right]$.
2.
$frac{1}{3}<frac{2k}{3^{m}}$ and $frac{2k+1}{3^{m}}<frac{2}{3}$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. Then $left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. It follows that $bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ and thus $left(bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) =emptyset$.
3.
From 1. and 2., we get
$begin{align}bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] &= bigcap_{m=1}^{n+1} left[left( bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor+1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) right]\&=bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
4.
$2 left(leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1} right)=2 left(leftlfloor frac{3^{m-1}}{2}rightrfloorright)+2.3^{m-1}=(3^{m-1}-1)+2.3^{m-1}=3.3^{m-1}-1=$ $3^m-1=2 . leftlfloor frac{3^{m}}{2}rightrfloor$. Hence $leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}=leftlfloor frac{3^{m}}{2}rightrfloor$.
As a result,
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right)$$
Let $I_m^k=left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$.
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1} I_m^k right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor} I_m^k right)$$
$frac{2k+1}{3^{m}}<frac{2}{3}$ for all $k le 3^{m-1}-1$ and $frac{2}{3} le frac{2k}{3^{m}}$ for all $k ge 3^{m-1}$ $implies$ $left(bigcup_{k=0}^{3^{m_1-1}-1} I_m^kright) cap left( bigcup_{k=3^{m_2-1}}^{leftlfloor frac{3^{m_2}}{2}rightrfloor} I_m^k right) =emptyset$ for all $m_1,m_2 le n+1$.
Lemma: Let $I_n= {iinBbb N mid 0 le i le n}$ and $(A_i mid iin I_n)$, $(B_i mid iin I_n)$ be collections of nonempty sets such that $A_i cap B_j =emptyset$ for all $i,jin I_n$. Then $$left(bigcap_{iin I_n} A_i right) cup left(bigcap_{iin I_n} B_iright)= bigcap_{iin I_n} (A_icup B_i)$$
Proof: It is easy to verify this lemma.
We apply this lemma for $C_{n+1}$ and get $$C_{n+1}=bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$$
First, $C_{n+1} subseteq [0,1]$ and thus $C_{n+1}=C_{n+1} cap [0,1]$.
Second, $bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] =[0,1]$.
As a result,
$begin{align}C_{n+1}&=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap [0,1]\&= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right)\&=bigcap_{m=0}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
This completes the proof.
$endgroup$
add a comment |
$begingroup$
After several hours of thinking, I have figured out a proof and posted it here as an answer.
Lemma: $$2 . leftlfloor frac{3^{m}}{2}rightrfloor = 3^m-1$$
Proof:
We prove this assertion by induction on $n$. The statement is trivially true for $n=0$. Let it hold for $n$.
$2 . leftlfloor dfrac{3^{m+1}}{2}rightrfloor = 2 . leftlfloor dfrac{2.3^{m}+3^m}{2}rightrfloor=2 . leftlfloor 3^m+ dfrac{3^m}{2}rightrfloor=2left(3^m+leftlfloor dfrac{3^{m}}{2}rightrfloorright)=$ $2.3^m+2 . leftlfloor dfrac{3^{m}}{2}rightrfloor$ $=2.3^m+(3^m-1)=3^{m+1}-1$. This completes the proof.
The formula is trivially true for $n=0$. Let it hold for $n$.
$begin{align}C_{n+1} &=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)\ &=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)\ &=left(bigcap_{t=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{t-1}}{2}rightrfloor}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right) cup left(bigcap_{t=1}^{n+1}bigcup_{k=3^{t-1}}^{leftlfloor frac{3^{t-1}}{2}rightrfloor+3^{t-1}}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right)
text{ Let }t=m+1\ &=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) text{ Let }m=tend{align}$
We have some observations.
1.
$bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=left[0,frac{1}{3}right]$.
2.
$frac{1}{3}<frac{2k}{3^{m}}$ and $frac{2k+1}{3^{m}}<frac{2}{3}$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. Then $left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. It follows that $bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ and thus $left(bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) =emptyset$.
3.
From 1. and 2., we get
$begin{align}bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] &= bigcap_{m=1}^{n+1} left[left( bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor+1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) right]\&=bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
4.
$2 left(leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1} right)=2 left(leftlfloor frac{3^{m-1}}{2}rightrfloorright)+2.3^{m-1}=(3^{m-1}-1)+2.3^{m-1}=3.3^{m-1}-1=$ $3^m-1=2 . leftlfloor frac{3^{m}}{2}rightrfloor$. Hence $leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}=leftlfloor frac{3^{m}}{2}rightrfloor$.
As a result,
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right)$$
Let $I_m^k=left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$.
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1} I_m^k right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor} I_m^k right)$$
$frac{2k+1}{3^{m}}<frac{2}{3}$ for all $k le 3^{m-1}-1$ and $frac{2}{3} le frac{2k}{3^{m}}$ for all $k ge 3^{m-1}$ $implies$ $left(bigcup_{k=0}^{3^{m_1-1}-1} I_m^kright) cap left( bigcup_{k=3^{m_2-1}}^{leftlfloor frac{3^{m_2}}{2}rightrfloor} I_m^k right) =emptyset$ for all $m_1,m_2 le n+1$.
Lemma: Let $I_n= {iinBbb N mid 0 le i le n}$ and $(A_i mid iin I_n)$, $(B_i mid iin I_n)$ be collections of nonempty sets such that $A_i cap B_j =emptyset$ for all $i,jin I_n$. Then $$left(bigcap_{iin I_n} A_i right) cup left(bigcap_{iin I_n} B_iright)= bigcap_{iin I_n} (A_icup B_i)$$
Proof: It is easy to verify this lemma.
We apply this lemma for $C_{n+1}$ and get $$C_{n+1}=bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$$
First, $C_{n+1} subseteq [0,1]$ and thus $C_{n+1}=C_{n+1} cap [0,1]$.
Second, $bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] =[0,1]$.
As a result,
$begin{align}C_{n+1}&=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap [0,1]\&= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right)\&=bigcap_{m=0}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
This completes the proof.
$endgroup$
add a comment |
$begingroup$
After several hours of thinking, I have figured out a proof and posted it here as an answer.
Lemma: $$2 . leftlfloor frac{3^{m}}{2}rightrfloor = 3^m-1$$
Proof:
We prove this assertion by induction on $n$. The statement is trivially true for $n=0$. Let it hold for $n$.
$2 . leftlfloor dfrac{3^{m+1}}{2}rightrfloor = 2 . leftlfloor dfrac{2.3^{m}+3^m}{2}rightrfloor=2 . leftlfloor 3^m+ dfrac{3^m}{2}rightrfloor=2left(3^m+leftlfloor dfrac{3^{m}}{2}rightrfloorright)=$ $2.3^m+2 . leftlfloor dfrac{3^{m}}{2}rightrfloor$ $=2.3^m+(3^m-1)=3^{m+1}-1$. This completes the proof.
The formula is trivially true for $n=0$. Let it hold for $n$.
$begin{align}C_{n+1} &=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)\ &=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)\ &=left(bigcap_{t=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{t-1}}{2}rightrfloor}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right) cup left(bigcap_{t=1}^{n+1}bigcup_{k=3^{t-1}}^{leftlfloor frac{3^{t-1}}{2}rightrfloor+3^{t-1}}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right)
text{ Let }t=m+1\ &=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) text{ Let }m=tend{align}$
We have some observations.
1.
$bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=left[0,frac{1}{3}right]$.
2.
$frac{1}{3}<frac{2k}{3^{m}}$ and $frac{2k+1}{3^{m}}<frac{2}{3}$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. Then $left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. It follows that $bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ and thus $left(bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) =emptyset$.
3.
From 1. and 2., we get
$begin{align}bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] &= bigcap_{m=1}^{n+1} left[left( bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor+1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) right]\&=bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
4.
$2 left(leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1} right)=2 left(leftlfloor frac{3^{m-1}}{2}rightrfloorright)+2.3^{m-1}=(3^{m-1}-1)+2.3^{m-1}=3.3^{m-1}-1=$ $3^m-1=2 . leftlfloor frac{3^{m}}{2}rightrfloor$. Hence $leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}=leftlfloor frac{3^{m}}{2}rightrfloor$.
As a result,
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right)$$
Let $I_m^k=left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$.
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1} I_m^k right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor} I_m^k right)$$
$frac{2k+1}{3^{m}}<frac{2}{3}$ for all $k le 3^{m-1}-1$ and $frac{2}{3} le frac{2k}{3^{m}}$ for all $k ge 3^{m-1}$ $implies$ $left(bigcup_{k=0}^{3^{m_1-1}-1} I_m^kright) cap left( bigcup_{k=3^{m_2-1}}^{leftlfloor frac{3^{m_2}}{2}rightrfloor} I_m^k right) =emptyset$ for all $m_1,m_2 le n+1$.
Lemma: Let $I_n= {iinBbb N mid 0 le i le n}$ and $(A_i mid iin I_n)$, $(B_i mid iin I_n)$ be collections of nonempty sets such that $A_i cap B_j =emptyset$ for all $i,jin I_n$. Then $$left(bigcap_{iin I_n} A_i right) cup left(bigcap_{iin I_n} B_iright)= bigcap_{iin I_n} (A_icup B_i)$$
Proof: It is easy to verify this lemma.
We apply this lemma for $C_{n+1}$ and get $$C_{n+1}=bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$$
First, $C_{n+1} subseteq [0,1]$ and thus $C_{n+1}=C_{n+1} cap [0,1]$.
Second, $bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] =[0,1]$.
As a result,
$begin{align}C_{n+1}&=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap [0,1]\&= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right)\&=bigcap_{m=0}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
This completes the proof.
$endgroup$
After several hours of thinking, I have figured out a proof and posted it here as an answer.
Lemma: $$2 . leftlfloor frac{3^{m}}{2}rightrfloor = 3^m-1$$
Proof:
We prove this assertion by induction on $n$. The statement is trivially true for $n=0$. Let it hold for $n$.
$2 . leftlfloor dfrac{3^{m+1}}{2}rightrfloor = 2 . leftlfloor dfrac{2.3^{m}+3^m}{2}rightrfloor=2 . leftlfloor 3^m+ dfrac{3^m}{2}rightrfloor=2left(3^m+leftlfloor dfrac{3^{m}}{2}rightrfloorright)=$ $2.3^m+2 . leftlfloor dfrac{3^{m}}{2}rightrfloor$ $=2.3^m+(3^m-1)=3^{m+1}-1$. This completes the proof.
The formula is trivially true for $n=0$. Let it hold for $n$.
$begin{align}C_{n+1} &=frac{C_n}{3} cupleft(frac{2}{3}+frac{C_n}{3}right)\ &=left(frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right]right) cup left(frac{2}{3}+frac{1}{3} bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^m},frac{2k+1}{3^m}right] right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k+2.3^m}{3^{m+1}},frac{2k+2.3^m+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2(k+3^m)}{3^{m+1}},frac{2(k+3^m)+1}{3^{m+1}}right]right)\ &=left(bigcap_{m=0}^{n}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right) cup left(bigcap_{m=0}^{n}bigcup_{k=3^m}^{leftlfloor frac{3^{m}}{2}rightrfloor+3^m}left[frac{2k}{3^{m+1}},frac{2k+1}{3^{m+1}}right]right)\ &=left(bigcap_{t=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{t-1}}{2}rightrfloor}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right) cup left(bigcap_{t=1}^{n+1}bigcup_{k=3^{t-1}}^{leftlfloor frac{3^{t-1}}{2}rightrfloor+3^{t-1}}left[frac{2k}{3^{t}},frac{2k+1}{3^{t}}right]right)
text{ Let }t=m+1\ &=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) text{ Let }m=tend{align}$
We have some observations.
1.
$bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=left[0,frac{1}{3}right]$.
2.
$frac{1}{3}<frac{2k}{3^{m}}$ and $frac{2k+1}{3^{m}}<frac{2}{3}$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. Then $left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ for all $leftlfloor frac{3^{m-1}}{2}rightrfloor +1le k le 3^{m-1}-1$. It follows that $bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] subsetneq left(frac{1}{3},frac{2}{3}right)$ and thus $left(bigcap_{m=1}^{1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor +1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) =emptyset$.
3.
From 1. and 2., we get
$begin{align}bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] &= bigcap_{m=1}^{n+1} left[left( bigcup_{k=0}^{leftlfloor frac{3^{m-1}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcup_{k=leftlfloor frac{3^{m-1}}{2}rightrfloor+1}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) right]\&=bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
4.
$2 left(leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1} right)=2 left(leftlfloor frac{3^{m-1}}{2}rightrfloorright)+2.3^{m-1}=(3^{m-1}-1)+2.3^{m-1}=3.3^{m-1}-1=$ $3^m-1=2 . leftlfloor frac{3^{m}}{2}rightrfloor$. Hence $leftlfloor frac{3^{m-1}}{2}rightrfloor+3^{m-1}=leftlfloor frac{3^{m}}{2}rightrfloor$.
As a result,
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right)$$
Let $I_m^k=left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$.
$$C_{n+1}= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{3^{m-1}-1} I_m^k right) cup left(bigcap_{m=1}^{n+1}bigcup_{k=3^{m-1}}^{leftlfloor frac{3^{m}}{2}rightrfloor} I_m^k right)$$
$frac{2k+1}{3^{m}}<frac{2}{3}$ for all $k le 3^{m-1}-1$ and $frac{2}{3} le frac{2k}{3^{m}}$ for all $k ge 3^{m-1}$ $implies$ $left(bigcup_{k=0}^{3^{m_1-1}-1} I_m^kright) cap left( bigcup_{k=3^{m_2-1}}^{leftlfloor frac{3^{m_2}}{2}rightrfloor} I_m^k right) =emptyset$ for all $m_1,m_2 le n+1$.
Lemma: Let $I_n= {iinBbb N mid 0 le i le n}$ and $(A_i mid iin I_n)$, $(B_i mid iin I_n)$ be collections of nonempty sets such that $A_i cap B_j =emptyset$ for all $i,jin I_n$. Then $$left(bigcap_{iin I_n} A_i right) cup left(bigcap_{iin I_n} B_iright)= bigcap_{iin I_n} (A_icup B_i)$$
Proof: It is easy to verify this lemma.
We apply this lemma for $C_{n+1}$ and get $$C_{n+1}=bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]$$
First, $C_{n+1} subseteq [0,1]$ and thus $C_{n+1}=C_{n+1} cap [0,1]$.
Second, $bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]=bigcup_{k=0}^{0}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] =[0,1]$.
As a result,
$begin{align}C_{n+1}&=left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap [0,1]\&= left(bigcap_{m=1}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]right) cap left( bigcap_{m=0}^{0}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right] right)\&=bigcap_{m=0}^{n+1}bigcup_{k=0}^{leftlfloor frac{3^{m}}{2}rightrfloor}left[frac{2k}{3^{m}},frac{2k+1}{3^{m}}right]end{align}$
This completes the proof.
edited Jan 23 at 9:12
answered Jan 23 at 9:05
Le Anh DungLe Anh Dung
1,2131621
1,2131621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081687%2fhow-to-prove-this-closed-formula-for-cantor-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Btw, where did you saw this form? This is the first time I see it
$endgroup$
– Holo
Jan 22 at 15:20
$begingroup$
@Holo I got it from here.
$endgroup$
– Le Anh Dung
Jan 22 at 16:44