find the angle in a triangle with angles $ 20^{circ}, 70^circ, 90^circ $
$begingroup$
I have triangle geometry problem:
a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.
b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.
euclidean-geometry triangle angle
$endgroup$
add a comment |
$begingroup$
I have triangle geometry problem:
a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.
b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.
euclidean-geometry triangle angle
$endgroup$
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
1
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47
add a comment |
$begingroup$
I have triangle geometry problem:
a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.
b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.
euclidean-geometry triangle angle
$endgroup$
I have triangle geometry problem:
a) Let $triangle ABC$ be a right triangle with $angle A=90^circ$ and $angle B=20^circ$. Let BE be the angle bisector of $angle B$, and $F$ be a point on segment $AB$ such that $angle ACF=30^circ$. prove that $angle CFE=20^circ$.
b) Prove the same statement with the condition $angle ACF=40^circ$ instead of $angle ACF=30^circ$.
euclidean-geometry triangle angle
euclidean-geometry triangle angle
edited Jan 21 at 9:58
user549397
1,5081418
1,5081418
asked May 4 '18 at 6:40
Saeed_TSaeed_T
575
575
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
1
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47
add a comment |
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
1
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
1
1
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here is a solution to part (b).
Let $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.
Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.
Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.
$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.
Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.
Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2766062%2ffind-the-angle-in-a-triangle-with-angles-20-circ-70-circ-90-circ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is a solution to part (b).
Let $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.
Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.
Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.
$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.
Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.
Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.
$endgroup$
add a comment |
$begingroup$
Here is a solution to part (b).
Let $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.
Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.
Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.
$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.
Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.
Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.
$endgroup$
add a comment |
$begingroup$
Here is a solution to part (b).
Let $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.
Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.
Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.
$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.
Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.
Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.
$endgroup$
Here is a solution to part (b).
Let $Omega$ be $BCE$'s circumcircle and $O$ its centre. Then $angle COE=2angle CBE=20^circ$. $angle EOB=2angle ECB=140^circ$ so $angle COB=angle COE+angle EOB=160^circ$ so $angle OBC=angle BCO=10^circ$.
Erect an equilateral $triangle BOJ$ on base $BO$.
$OJ=OB$ so $J$ is on $Omega$. $angle JCB=frac{1}2 angle JOB=30^circ=angle FCB$ so $F$ is on $CJ$.
Let $OJ$ cross $BF$ at $P$. $angle OBJ=60^circ=2angle OBF$ so $BF$ is an axis of symmetry of $triangle BOJ$ and is thus $OJ$'s $perp$ bisector. Thus $angle FOJ=angle OJF$.
$OJ=OB=OC$ so $triangle CJO$ is isosceles on base $CJ$. $angle JCO=angle FCO=angle FCB+angle BCO=40^circ$, so $angle OJC=angle JCO=40^circ$ so $angle FOJ=angle OJF=angle OJC=40^circ$.
Therefore $angle EOF=angle EOB-angle FOJ-angle JOB=140^circ-40^circ-60^circ=40^circ=angle ECF$, so $OCEF$ is cyclic, so $angle CFE=angle COE=20^circ$, which solves part b.
Hints for part (a): it might be useful to know that $OCEF_aF_b$ are all on a circle whose centre lies on $BC$.
answered Jan 21 at 9:43
Rosie FRosie F
1,312315
1,312315
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2766062%2ffind-the-angle-in-a-triangle-with-angles-20-circ-70-circ-90-circ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try drawing them out and using the trigonometry formulae that you have been taught.
$endgroup$
– Bill Wallis
May 4 '18 at 12:41
1
$begingroup$
Thanks Mr. Wallis, but I'm searching for a purely geometric and non-trig solution.
$endgroup$
– Saeed_T
May 4 '18 at 13:36
$begingroup$
If only purely geometric means may be used, then it is evident that the techniques @BillWallis suggested are not enough to determine the direction of $EF$ with respect to the other lines' directions, and not enough to solve this problem.
$endgroup$
– Rosie F
Jan 21 at 9:47