Integration by Substitution of $cos(log(x))$












0












$begingroup$


I need to find the indefinite integral:
$int cos(log(x)) dx$.



I've tried using u-substitution, setting $u=log(x)$. Then I get:
$int cos(u)du$, where $du$ is $frac{1}{x}dx$.



The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?



Thanks for your time.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I need to find the indefinite integral:
    $int cos(log(x)) dx$.



    I've tried using u-substitution, setting $u=log(x)$. Then I get:
    $int cos(u)du$, where $du$ is $frac{1}{x}dx$.



    The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?



    Thanks for your time.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I need to find the indefinite integral:
      $int cos(log(x)) dx$.



      I've tried using u-substitution, setting $u=log(x)$. Then I get:
      $int cos(u)du$, where $du$ is $frac{1}{x}dx$.



      The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?



      Thanks for your time.










      share|cite|improve this question











      $endgroup$




      I need to find the indefinite integral:
      $int cos(log(x)) dx$.



      I've tried using u-substitution, setting $u=log(x)$. Then I get:
      $int cos(u)du$, where $du$ is $frac{1}{x}dx$.



      The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?



      Thanks for your time.







      integration substitution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 13 '18 at 7:56









      farruhota

      20.4k2739




      20.4k2739










      asked May 13 '18 at 7:27









      Three OneFourThree OneFour

      1099




      1099






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Let $ln x=uimplies x=e^u,dx=e^u du$



          $$intcos(ln x)dx=int e^ucos u du $$



          Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$



          See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How do you know that $dx=e^u du$?
            $endgroup$
            – Three OneFour
            May 13 '18 at 7:34










          • $begingroup$
            @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
            $endgroup$
            – lab bhattacharjee
            May 13 '18 at 7:35



















          0












          $begingroup$

          Better way:



          Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
          So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
          And hence
          $$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
          Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
          We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2778954%2fintegration-by-substitution-of-cos-logx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Let $ln x=uimplies x=e^u,dx=e^u du$



            $$intcos(ln x)dx=int e^ucos u du $$



            Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$



            See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              How do you know that $dx=e^u du$?
              $endgroup$
              – Three OneFour
              May 13 '18 at 7:34










            • $begingroup$
              @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
              $endgroup$
              – lab bhattacharjee
              May 13 '18 at 7:35
















            2












            $begingroup$

            Let $ln x=uimplies x=e^u,dx=e^u du$



            $$intcos(ln x)dx=int e^ucos u du $$



            Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$



            See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              How do you know that $dx=e^u du$?
              $endgroup$
              – Three OneFour
              May 13 '18 at 7:34










            • $begingroup$
              @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
              $endgroup$
              – lab bhattacharjee
              May 13 '18 at 7:35














            2












            2








            2





            $begingroup$

            Let $ln x=uimplies x=e^u,dx=e^u du$



            $$intcos(ln x)dx=int e^ucos u du $$



            Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$



            See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$






            share|cite|improve this answer









            $endgroup$



            Let $ln x=uimplies x=e^u,dx=e^u du$



            $$intcos(ln x)dx=int e^ucos u du $$



            Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$



            See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered May 13 '18 at 7:32









            lab bhattacharjeelab bhattacharjee

            226k15157275




            226k15157275












            • $begingroup$
              How do you know that $dx=e^u du$?
              $endgroup$
              – Three OneFour
              May 13 '18 at 7:34










            • $begingroup$
              @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
              $endgroup$
              – lab bhattacharjee
              May 13 '18 at 7:35


















            • $begingroup$
              How do you know that $dx=e^u du$?
              $endgroup$
              – Three OneFour
              May 13 '18 at 7:34










            • $begingroup$
              @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
              $endgroup$
              – lab bhattacharjee
              May 13 '18 at 7:35
















            $begingroup$
            How do you know that $dx=e^u du$?
            $endgroup$
            – Three OneFour
            May 13 '18 at 7:34




            $begingroup$
            How do you know that $dx=e^u du$?
            $endgroup$
            – Three OneFour
            May 13 '18 at 7:34












            $begingroup$
            @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
            $endgroup$
            – lab bhattacharjee
            May 13 '18 at 7:35




            $begingroup$
            @ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
            $endgroup$
            – lab bhattacharjee
            May 13 '18 at 7:35











            0












            $begingroup$

            Better way:



            Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
            So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
            And hence
            $$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
            Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
            We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Better way:



              Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
              So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
              And hence
              $$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
              Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
              We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Better way:



                Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
                So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
                And hence
                $$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
                Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
                We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$






                share|cite|improve this answer









                $endgroup$



                Better way:



                Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
                So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
                And hence
                $$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
                Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
                We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 21 at 1:42









                clathratusclathratus

                4,615337




                4,615337






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2778954%2fintegration-by-substitution-of-cos-logx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    What does “Dominus providebit” mean?

                    File:Tiny Toon Adventures Wacky Sports JP Title.png