Integration by Substitution of $cos(log(x))$
$begingroup$
I need to find the indefinite integral:
$int cos(log(x)) dx$.
I've tried using u-substitution, setting $u=log(x)$. Then I get:
$int cos(u)du$, where $du$ is $frac{1}{x}dx$.
The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?
Thanks for your time.
integration substitution
$endgroup$
add a comment |
$begingroup$
I need to find the indefinite integral:
$int cos(log(x)) dx$.
I've tried using u-substitution, setting $u=log(x)$. Then I get:
$int cos(u)du$, where $du$ is $frac{1}{x}dx$.
The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?
Thanks for your time.
integration substitution
$endgroup$
add a comment |
$begingroup$
I need to find the indefinite integral:
$int cos(log(x)) dx$.
I've tried using u-substitution, setting $u=log(x)$. Then I get:
$int cos(u)du$, where $du$ is $frac{1}{x}dx$.
The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?
Thanks for your time.
integration substitution
$endgroup$
I need to find the indefinite integral:
$int cos(log(x)) dx$.
I've tried using u-substitution, setting $u=log(x)$. Then I get:
$int cos(u)du$, where $du$ is $frac{1}{x}dx$.
The worked solutions I can see put an $e^u$ in there as well, and I'm not really sure why. How should I go about solving this problem?
Thanks for your time.
integration substitution
integration substitution
edited May 13 '18 at 7:56
farruhota
20.4k2739
20.4k2739
asked May 13 '18 at 7:27
Three OneFourThree OneFour
1099
1099
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $ln x=uimplies x=e^u,dx=e^u du$
$$intcos(ln x)dx=int e^ucos u du $$
Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$
See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$
$endgroup$
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
add a comment |
$begingroup$
Better way:
Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
And hence
$$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2778954%2fintegration-by-substitution-of-cos-logx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $ln x=uimplies x=e^u,dx=e^u du$
$$intcos(ln x)dx=int e^ucos u du $$
Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$
See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$
$endgroup$
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
add a comment |
$begingroup$
Let $ln x=uimplies x=e^u,dx=e^u du$
$$intcos(ln x)dx=int e^ucos u du $$
Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$
See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$
$endgroup$
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
add a comment |
$begingroup$
Let $ln x=uimplies x=e^u,dx=e^u du$
$$intcos(ln x)dx=int e^ucos u du $$
Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$
See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$
$endgroup$
Let $ln x=uimplies x=e^u,dx=e^u du$
$$intcos(ln x)dx=int e^ucos u du $$
Now use Integration of $e^{ax}cos bx$ and $e^{ax}sin bx$
See also : Set $n=-1$ in $100$-th derivative of the function $f(x)=e^{x}cos(x)$
answered May 13 '18 at 7:32
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
add a comment |
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
How do you know that $dx=e^u du$?
$endgroup$
– Three OneFour
May 13 '18 at 7:34
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
$begingroup$
@ThreeOneFour, $$du=dfrac{dx}x=dfrac{dx}{e^u}$$ right?
$endgroup$
– lab bhattacharjee
May 13 '18 at 7:35
add a comment |
$begingroup$
Better way:
Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
And hence
$$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$
$endgroup$
add a comment |
$begingroup$
Better way:
Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
And hence
$$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$
$endgroup$
add a comment |
$begingroup$
Better way:
Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
And hence
$$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$
$endgroup$
Better way:
Recall that $$cos x=frac{e^{ix}+e^{-ix}}2$$
So $$cos log x=frac{e^{ilog x}+e^{-ilog x}}2=frac{x^i+x^{-i}}2$$
And hence
$$intcoslog x,mathrm dx=frac12left[frac1{1+i}x^{1+i}+frac{1}{1-i}x^{1-i}right]+C$$
Then using $$sin x=frac{e^{ix}-e^{-ix}}{2i}$$
We have that $$intcoslog x,mathrm dx=frac{x}2[coslog x+sinlog x]+C$$
answered Jan 21 at 1:42
clathratusclathratus
4,615337
4,615337
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2778954%2fintegration-by-substitution-of-cos-logx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown