Exercises on Galois Theory
$begingroup$
I need a source for exercises on classical Galois Theory, or to be more specific, Galois extensions of finite fields and the rationals as well as applications (solvability by radicals, for example).
So far, I have worked with Tignol's "Galois Theory of Algebraic Equations". Any additional suggestions would be appreciated, whether it is a textbook or a website, but the language should be English. Solutions are welcome, but no necessity.
Thanks in advance!
abstract-algebra reference-request galois-theory book-recommendation online-resources
$endgroup$
add a comment |
$begingroup$
I need a source for exercises on classical Galois Theory, or to be more specific, Galois extensions of finite fields and the rationals as well as applications (solvability by radicals, for example).
So far, I have worked with Tignol's "Galois Theory of Algebraic Equations". Any additional suggestions would be appreciated, whether it is a textbook or a website, but the language should be English. Solutions are welcome, but no necessity.
Thanks in advance!
abstract-algebra reference-request galois-theory book-recommendation online-resources
$endgroup$
add a comment |
$begingroup$
I need a source for exercises on classical Galois Theory, or to be more specific, Galois extensions of finite fields and the rationals as well as applications (solvability by radicals, for example).
So far, I have worked with Tignol's "Galois Theory of Algebraic Equations". Any additional suggestions would be appreciated, whether it is a textbook or a website, but the language should be English. Solutions are welcome, but no necessity.
Thanks in advance!
abstract-algebra reference-request galois-theory book-recommendation online-resources
$endgroup$
I need a source for exercises on classical Galois Theory, or to be more specific, Galois extensions of finite fields and the rationals as well as applications (solvability by radicals, for example).
So far, I have worked with Tignol's "Galois Theory of Algebraic Equations". Any additional suggestions would be appreciated, whether it is a textbook or a website, but the language should be English. Solutions are welcome, but no necessity.
Thanks in advance!
abstract-algebra reference-request galois-theory book-recommendation online-resources
abstract-algebra reference-request galois-theory book-recommendation online-resources
edited Dec 18 '14 at 8:14
Martin Sleziak
44.7k8117272
44.7k8117272
asked Jul 25 '11 at 13:28
Clifford B.Clifford B.
8314
8314
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
I really like the exercises in Lang's Algebra. There's a little bit of everything in there.
Milne's notes have exercises at the end of every chapter, a chapter of review exercises, and a two-hour exam; solutions (or at least hints) for all of these are given at the end. A lot of the action takes place over $mathbf Q$, but I saw a fair number of questions about finite fields and they seemed good.
Keith Conrad's handouts don't have a lot of exercises, but when I had to review this stuff I found it helpful to look at the statements of his examples, try them for myself, and then read his methods. There are usually myriad ways to solve exercises in this area.
Teruyoshi Yoshida has fun example sheets, in addition to complete course notes.
$endgroup$
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
add a comment |
$begingroup$
Try these books:
- Classical Galois Theory with Examples
- Exploratory Galois Theory
- Galois Theory for Beginners: A Historical Perspective
$endgroup$
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
add a comment |
$begingroup$
Many pages of exercises at J K Verma's website, here.
$endgroup$
add a comment |
$begingroup$
Have you tried working out through
(I) Abstract Algebra by dummit Foote
(II)Field and Galois theory by Patrick Morandi
Both of these books are rich with exercise problem and he questions are very diverse. I would recommend you to go through this as it helped me tremendously
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f53658%2fexercises-on-galois-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I really like the exercises in Lang's Algebra. There's a little bit of everything in there.
Milne's notes have exercises at the end of every chapter, a chapter of review exercises, and a two-hour exam; solutions (or at least hints) for all of these are given at the end. A lot of the action takes place over $mathbf Q$, but I saw a fair number of questions about finite fields and they seemed good.
Keith Conrad's handouts don't have a lot of exercises, but when I had to review this stuff I found it helpful to look at the statements of his examples, try them for myself, and then read his methods. There are usually myriad ways to solve exercises in this area.
Teruyoshi Yoshida has fun example sheets, in addition to complete course notes.
$endgroup$
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
add a comment |
$begingroup$
I really like the exercises in Lang's Algebra. There's a little bit of everything in there.
Milne's notes have exercises at the end of every chapter, a chapter of review exercises, and a two-hour exam; solutions (or at least hints) for all of these are given at the end. A lot of the action takes place over $mathbf Q$, but I saw a fair number of questions about finite fields and they seemed good.
Keith Conrad's handouts don't have a lot of exercises, but when I had to review this stuff I found it helpful to look at the statements of his examples, try them for myself, and then read his methods. There are usually myriad ways to solve exercises in this area.
Teruyoshi Yoshida has fun example sheets, in addition to complete course notes.
$endgroup$
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
add a comment |
$begingroup$
I really like the exercises in Lang's Algebra. There's a little bit of everything in there.
Milne's notes have exercises at the end of every chapter, a chapter of review exercises, and a two-hour exam; solutions (or at least hints) for all of these are given at the end. A lot of the action takes place over $mathbf Q$, but I saw a fair number of questions about finite fields and they seemed good.
Keith Conrad's handouts don't have a lot of exercises, but when I had to review this stuff I found it helpful to look at the statements of his examples, try them for myself, and then read his methods. There are usually myriad ways to solve exercises in this area.
Teruyoshi Yoshida has fun example sheets, in addition to complete course notes.
$endgroup$
I really like the exercises in Lang's Algebra. There's a little bit of everything in there.
Milne's notes have exercises at the end of every chapter, a chapter of review exercises, and a two-hour exam; solutions (or at least hints) for all of these are given at the end. A lot of the action takes place over $mathbf Q$, but I saw a fair number of questions about finite fields and they seemed good.
Keith Conrad's handouts don't have a lot of exercises, but when I had to review this stuff I found it helpful to look at the statements of his examples, try them for myself, and then read his methods. There are usually myriad ways to solve exercises in this area.
Teruyoshi Yoshida has fun example sheets, in addition to complete course notes.
answered Jul 25 '11 at 15:13
Dylan MorelandDylan Moreland
16.8k23563
16.8k23563
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
add a comment |
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
Thanks to you, too; I wanted to get Lang's book as a reference, but I'll take a look at the exercises as well.
$endgroup$
– Clifford B.
Jul 25 '11 at 15:46
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
$begingroup$
No problem! Lang's book is divisive, but it can teach you a lot, and the field theory chapters are probably its best; George Bergman's companion to the book could be useful as well.
$endgroup$
– Dylan Moreland
Jul 25 '11 at 15:54
add a comment |
$begingroup$
Try these books:
- Classical Galois Theory with Examples
- Exploratory Galois Theory
- Galois Theory for Beginners: A Historical Perspective
$endgroup$
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
add a comment |
$begingroup$
Try these books:
- Classical Galois Theory with Examples
- Exploratory Galois Theory
- Galois Theory for Beginners: A Historical Perspective
$endgroup$
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
add a comment |
$begingroup$
Try these books:
- Classical Galois Theory with Examples
- Exploratory Galois Theory
- Galois Theory for Beginners: A Historical Perspective
$endgroup$
Try these books:
- Classical Galois Theory with Examples
- Exploratory Galois Theory
- Galois Theory for Beginners: A Historical Perspective
edited Aug 3 '17 at 1:26
answered Jul 25 '11 at 13:42
lhflhf
163k10168390
163k10168390
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
add a comment |
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
$begingroup$
Thanks, I will check them out as soon as possible.
$endgroup$
– Clifford B.
Jul 25 '11 at 14:00
add a comment |
$begingroup$
Many pages of exercises at J K Verma's website, here.
$endgroup$
add a comment |
$begingroup$
Many pages of exercises at J K Verma's website, here.
$endgroup$
add a comment |
$begingroup$
Many pages of exercises at J K Verma's website, here.
$endgroup$
Many pages of exercises at J K Verma's website, here.
answered Aug 13 '14 at 4:46
Gerry MyersonGerry Myerson
146k8147299
146k8147299
add a comment |
add a comment |
$begingroup$
Have you tried working out through
(I) Abstract Algebra by dummit Foote
(II)Field and Galois theory by Patrick Morandi
Both of these books are rich with exercise problem and he questions are very diverse. I would recommend you to go through this as it helped me tremendously
New contributor
$endgroup$
add a comment |
$begingroup$
Have you tried working out through
(I) Abstract Algebra by dummit Foote
(II)Field and Galois theory by Patrick Morandi
Both of these books are rich with exercise problem and he questions are very diverse. I would recommend you to go through this as it helped me tremendously
New contributor
$endgroup$
add a comment |
$begingroup$
Have you tried working out through
(I) Abstract Algebra by dummit Foote
(II)Field and Galois theory by Patrick Morandi
Both of these books are rich with exercise problem and he questions are very diverse. I would recommend you to go through this as it helped me tremendously
New contributor
$endgroup$
Have you tried working out through
(I) Abstract Algebra by dummit Foote
(II)Field and Galois theory by Patrick Morandi
Both of these books are rich with exercise problem and he questions are very diverse. I would recommend you to go through this as it helped me tremendously
New contributor
New contributor
answered Jan 7 at 18:54
user631697user631697
111
111
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f53658%2fexercises-on-galois-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown