A series about $n!$ and Riemann zeta function












13












$begingroup$


Compute
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}.
$$
By the software Mathematica, I find
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}=-frac{2}{3}-frac{zeta left( 1/2 right)}{sqrt{2pi}}.
$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    @TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
    $endgroup$
    – Julián Aguirre
    Apr 8 '18 at 13:04










  • $begingroup$
    In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    @MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 22:26


















13












$begingroup$


Compute
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}.
$$
By the software Mathematica, I find
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}=-frac{2}{3}-frac{zeta left( 1/2 right)}{sqrt{2pi}}.
$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    @TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
    $endgroup$
    – Julián Aguirre
    Apr 8 '18 at 13:04










  • $begingroup$
    In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    @MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 22:26
















13












13








13


11



$begingroup$


Compute
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}.
$$
By the software Mathematica, I find
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}=-frac{2}{3}-frac{zeta left( 1/2 right)}{sqrt{2pi}}.
$$










share|cite|improve this question









$endgroup$




Compute
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}.
$$
By the software Mathematica, I find
$$
sum_{n=1}^{infty}{left( frac{n^n}{n!e^n}-frac{1}{sqrt{2pi n}} right)}=-frac{2}{3}-frac{zeta left( 1/2 right)}{sqrt{2pi}}.
$$







calculus real-analysis sequences-and-series analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 8 '18 at 10:55









EufiskyEufisky

1,173517




1,173517








  • 2




    $begingroup$
    @TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
    $endgroup$
    – Julián Aguirre
    Apr 8 '18 at 13:04










  • $begingroup$
    In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    @MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 22:26
















  • 2




    $begingroup$
    @TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
    $endgroup$
    – Julián Aguirre
    Apr 8 '18 at 13:04










  • $begingroup$
    In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 18:52










  • $begingroup$
    @MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
    $endgroup$
    – Jack D'Aurizio
    Apr 8 '18 at 22:26










2




2




$begingroup$
@TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
$endgroup$
– Julián Aguirre
Apr 8 '18 at 13:04




$begingroup$
@TheSimpliFire The terms of the series converge to $0$, but there is no reason why the sum has to be close to $0$.
$endgroup$
– Julián Aguirre
Apr 8 '18 at 13:04












$begingroup$
In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 18:52




$begingroup$
In terms of the Lambert function we have $sum_{ngeq 1}frac{n^{n-1}(-1)^{n+1}}{n!}z^n=W_0(z)$ by Lagrange inversion formula and $frac{1}{sqrt{n}}=int_{0}^{+infty}frac{e^{-ns} ds}{sqrt{pi s}}$ holds by the inverse Laplace transform. In particular $$ t = sum_{ngeq 1}frac{n^{n-1} t^n}{n! e^{nt}} $$ holds for any $t$ in a neighbourhood of the origin, together with $$ 1 = sum_{ngeq 1}frac{n^{n}}{n!e^{nt}}(t^{n-1}-t^n).$$
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 18:52












$begingroup$
Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 18:52




$begingroup$
Now it should not be difficult to recover the mentioned identity by playing with the Laplace transform / Ramanujan's master theorem.
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 18:52












$begingroup$
@MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 22:26






$begingroup$
@MarcoCantarini: on the other hand such coefficients are related to Bernoulli numbers and values of the $zeta$ function, so that can be seen as a convolution between two similar generating functions, related to $logGamma$. This can be useful: $$ frac{n^n}{n!e^n}=frac{1}{2pi}int_{0}^{2pi}left(e^{e^{itheta}-1-itheta}right)^n,dtheta.$$
$endgroup$
– Jack D'Aurizio
Apr 8 '18 at 22:26












3 Answers
3






active

oldest

votes


















13












$begingroup$

Well, $-frac{1}{sqrt{2pi}}zetaleft(tfrac{1}{2}right)$ is the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{1}{sqrt{2pi n}}$, hence the problem boils down to finding the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{n^n}{n!e^n}$. As pointed out in the comments,



$$ W(x) = sum_{ngeq 1}frac{n^{n-1}(-1)^{n-1}}{n!}x^n $$
holds for any $xinleft(-frac{1}{e},frac{1}{e}right)$ by Lagrange inversion theorem, hence
$$ ze^{-z} W'(-ze^{-z})=sum_{ngeq 1}frac{n^n}{n!e^{nz}}z^{n}=frac{z}{1-z} =sum_{ngeq 1}z^ntag{1}$$
holds for any $zin(-W(e^{-1}),1)$. Pretty strange identity, I can give you that.

Similarly, over the same interval
$$ -W(-z e^{-z})=sum_{ngeq 1}frac{n^{n-1}}{n!e^{nz}}z^n = z tag{2}$$
$$ 1=sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n-1}-sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n}=frac{1}{1-z}-frac{z}{1-z}.tag{3}$$
Since $zeta(0)=-frac{1}{2}$, it should not be difficult to prove from $(1)$ and $(2)$ that the $zeta$-regularization of $sum_{ngeq 1}frac{n^n}{n!e^n}$ equals $-frac{2}{3}$ as wanted, for instance by computing $sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}$ for any $kinmathbb{N}$:
$$ sum_{ngeq 1}frac{n^{n-2}}{n!e^n}=int_{-1/e}^{1}frac{W(x)}{x},dx = frac{1}{2},qquad sum_{ngeq 1}frac{n^{n-3}}{n!e^n}=-int_{-1/e}^{1}frac{W(x)}{x}(1+log(-x)),dx=frac{5}{12} $$
$$ sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{7}{18},qquad sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{1631}{4320},$$
$$ sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}= frac{1}{Gamma(k)}int_{0}^{1}(1-x)(x-1-log x)^{k-1},dx.tag{4} $$
Indeed the substitution $x=e^{-s}$ in $(4)$ and the integral representation for the $zeta$ function complete the proof.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
    $endgroup$
    – i707107
    Apr 10 '18 at 14:51










  • $begingroup$
    The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
    $endgroup$
    – Jack D'Aurizio
    Apr 10 '18 at 15:13










  • $begingroup$
    Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
    $endgroup$
    – i707107
    Apr 11 '18 at 18:43








  • 2




    $begingroup$
    Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
    $endgroup$
    – i707107
    Apr 11 '18 at 19:06






  • 1




    $begingroup$
    We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
    $endgroup$
    – i707107
    Apr 12 '18 at 1:39



















5












$begingroup$

Taking $$Fleft(xright)=sum_{ngeq1}frac{n^{n-1}}{n!e^{n}}x^{n}-frac{1}{sqrt{2pi}}sum_{ngeq1}frac{x^{n}}{n^{3/2}}=-Wleft(-frac{x}{e}right)-frac{mathrm{Li}_{3/2}left(xright)}{sqrt{2pi}},,left|xright|<1$$ where $Wleft(xright)$ is the Lambert $W$ function and $mathrm{Li}_{3/2}left(xright)$ is the Polylogarithm function, we obtain, differentiating both sides,that $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)x^{n-1}=-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}$$ so $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)=lim_{xrightarrow1^{-}}left(-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}right).$$ Now, we know that $$mathrm{Li}_{v}left(zright)=left(Gammaleft(1-vright)left(1-zright)^{v-1}+zetaleft(vright)right)left(1+Oleft(left|1-zright|right)right),vneq1,,zrightarrow1$$ and now we claim $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1}{sqrt{2left(1-xright)}}-frac{2}{3}$$ as $xrightarrow1^{-}$. This is true because, since $$Wleft(zright)sim-1+sqrt{2ze+2}-frac{2}{3}eleft(z+frac{1}{e}right)$$ as $zrightarrow-1/e$, we have $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1-sqrt{2left(1-xright)}+frac{2}{3}left(1-xright)}{xsqrt{2left(1-xright)}-frac{2}{3}left(1-xright)x}$$ $$=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}left(frac{1}{1-sqrt{2-2x}/3}right)right)=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}sum_{kgeq0}left(frac{sqrt{2-2x}}{3}right)^{k}right)$$ $$=frac{1}{x}left(-frac{2}{3}+frac{1}{sqrt{2left(1-xright)}}+Oleft(sqrt{1-x}right)right)$$ then the claim.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    (+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:34










  • $begingroup$
    A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:51










  • $begingroup$
    @JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
    $endgroup$
    – Marco Cantarini
    Apr 9 '18 at 13:55



















1












$begingroup$

This is a general answer to the followup question by Jack D'Aurizio.



Proposition




Let $ninmathbb{N}$. We have the asymptotic expansion
$$
n!sim sqrt{2pi n} frac{n^n}{e^n} left[ 1+ frac1{12n} +frac1{288n^2}-frac{139}{51840n^3}-frac{157}{2488320n^4}+cdots right]
$$




Note that this is not a convergent series, but an asymptotic expansion. The error in the truncated series is asymptotically equal to the first omitted term. Regard the series on the right as an element of the ring of power series over rational numbers $mathbb{Q}[[T]]$.
$$
S(T)=1+ frac1{12}T+frac1{288}T^2-frac{139}{51840}T^3-frac{157}{2488320}T^4 + cdots.
$$
Consider the multiplicative inverse of $S(T)$ in $mathbb{Q}[[T]]$.
$$
S^{-1}(T)=1-frac1{12}T+ g_2 T^2 + g_3 T^3 + g_4 T^4 + cdots.
$$
Let $Y_s(T)=sum_{n=0}^{infty} h_n(s) T^n inmathbb{Q}[s][[T]]$ be defined by
$$
left(frac12 T^2right)^{s-1}sum_{n=0}^{infty} h_n(s) T^n = left[ frac12 T^2 + frac13 T^3 + frac14 T^4+cdots right]^{s-1}.
$$
Then we have



Theorem




$$sum_{n=1}^{infty} n^pleft[ frac{n^n}{n!e^n}- frac1{sqrt{2pi n}} sum_{k=0}^p frac{g_k}{n^k}right]=(-2)^p p!h_{2p+1}(-p) - frac1{sqrt{2pi}}sum_{k=0}^p g_k zetaleft(k+frac12-pright).$$




With $p=0$, it is the original series
$$
sum_{n=1}^{infty} left[frac{n^n}{n!e^n} - frac1{sqrt{2pi n}}right]=-frac23 - frac{zetaleft(frac12right)}{sqrt{2pi}}
$$



With $p=1$, it gives the value of
$$
sum_{n=1}^{infty} left[ frac{n^{n+1}}{n!e^n} - sqrt{frac{n}{2pi}} + frac{1}{12sqrt{2pi n}}right] = -frac 4{135} - frac{zetaleft(-frac12right)}{sqrt{2pi}} + frac{zetaleft(frac12right)}{12sqrt{2pi}}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
    $endgroup$
    – Marco Cantarini
    Apr 14 '18 at 7:00













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727642%2fa-series-about-n-and-riemann-zeta-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

Well, $-frac{1}{sqrt{2pi}}zetaleft(tfrac{1}{2}right)$ is the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{1}{sqrt{2pi n}}$, hence the problem boils down to finding the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{n^n}{n!e^n}$. As pointed out in the comments,



$$ W(x) = sum_{ngeq 1}frac{n^{n-1}(-1)^{n-1}}{n!}x^n $$
holds for any $xinleft(-frac{1}{e},frac{1}{e}right)$ by Lagrange inversion theorem, hence
$$ ze^{-z} W'(-ze^{-z})=sum_{ngeq 1}frac{n^n}{n!e^{nz}}z^{n}=frac{z}{1-z} =sum_{ngeq 1}z^ntag{1}$$
holds for any $zin(-W(e^{-1}),1)$. Pretty strange identity, I can give you that.

Similarly, over the same interval
$$ -W(-z e^{-z})=sum_{ngeq 1}frac{n^{n-1}}{n!e^{nz}}z^n = z tag{2}$$
$$ 1=sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n-1}-sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n}=frac{1}{1-z}-frac{z}{1-z}.tag{3}$$
Since $zeta(0)=-frac{1}{2}$, it should not be difficult to prove from $(1)$ and $(2)$ that the $zeta$-regularization of $sum_{ngeq 1}frac{n^n}{n!e^n}$ equals $-frac{2}{3}$ as wanted, for instance by computing $sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}$ for any $kinmathbb{N}$:
$$ sum_{ngeq 1}frac{n^{n-2}}{n!e^n}=int_{-1/e}^{1}frac{W(x)}{x},dx = frac{1}{2},qquad sum_{ngeq 1}frac{n^{n-3}}{n!e^n}=-int_{-1/e}^{1}frac{W(x)}{x}(1+log(-x)),dx=frac{5}{12} $$
$$ sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{7}{18},qquad sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{1631}{4320},$$
$$ sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}= frac{1}{Gamma(k)}int_{0}^{1}(1-x)(x-1-log x)^{k-1},dx.tag{4} $$
Indeed the substitution $x=e^{-s}$ in $(4)$ and the integral representation for the $zeta$ function complete the proof.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
    $endgroup$
    – i707107
    Apr 10 '18 at 14:51










  • $begingroup$
    The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
    $endgroup$
    – Jack D'Aurizio
    Apr 10 '18 at 15:13










  • $begingroup$
    Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
    $endgroup$
    – i707107
    Apr 11 '18 at 18:43








  • 2




    $begingroup$
    Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
    $endgroup$
    – i707107
    Apr 11 '18 at 19:06






  • 1




    $begingroup$
    We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
    $endgroup$
    – i707107
    Apr 12 '18 at 1:39
















13












$begingroup$

Well, $-frac{1}{sqrt{2pi}}zetaleft(tfrac{1}{2}right)$ is the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{1}{sqrt{2pi n}}$, hence the problem boils down to finding the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{n^n}{n!e^n}$. As pointed out in the comments,



$$ W(x) = sum_{ngeq 1}frac{n^{n-1}(-1)^{n-1}}{n!}x^n $$
holds for any $xinleft(-frac{1}{e},frac{1}{e}right)$ by Lagrange inversion theorem, hence
$$ ze^{-z} W'(-ze^{-z})=sum_{ngeq 1}frac{n^n}{n!e^{nz}}z^{n}=frac{z}{1-z} =sum_{ngeq 1}z^ntag{1}$$
holds for any $zin(-W(e^{-1}),1)$. Pretty strange identity, I can give you that.

Similarly, over the same interval
$$ -W(-z e^{-z})=sum_{ngeq 1}frac{n^{n-1}}{n!e^{nz}}z^n = z tag{2}$$
$$ 1=sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n-1}-sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n}=frac{1}{1-z}-frac{z}{1-z}.tag{3}$$
Since $zeta(0)=-frac{1}{2}$, it should not be difficult to prove from $(1)$ and $(2)$ that the $zeta$-regularization of $sum_{ngeq 1}frac{n^n}{n!e^n}$ equals $-frac{2}{3}$ as wanted, for instance by computing $sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}$ for any $kinmathbb{N}$:
$$ sum_{ngeq 1}frac{n^{n-2}}{n!e^n}=int_{-1/e}^{1}frac{W(x)}{x},dx = frac{1}{2},qquad sum_{ngeq 1}frac{n^{n-3}}{n!e^n}=-int_{-1/e}^{1}frac{W(x)}{x}(1+log(-x)),dx=frac{5}{12} $$
$$ sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{7}{18},qquad sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{1631}{4320},$$
$$ sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}= frac{1}{Gamma(k)}int_{0}^{1}(1-x)(x-1-log x)^{k-1},dx.tag{4} $$
Indeed the substitution $x=e^{-s}$ in $(4)$ and the integral representation for the $zeta$ function complete the proof.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
    $endgroup$
    – i707107
    Apr 10 '18 at 14:51










  • $begingroup$
    The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
    $endgroup$
    – Jack D'Aurizio
    Apr 10 '18 at 15:13










  • $begingroup$
    Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
    $endgroup$
    – i707107
    Apr 11 '18 at 18:43








  • 2




    $begingroup$
    Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
    $endgroup$
    – i707107
    Apr 11 '18 at 19:06






  • 1




    $begingroup$
    We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
    $endgroup$
    – i707107
    Apr 12 '18 at 1:39














13












13








13





$begingroup$

Well, $-frac{1}{sqrt{2pi}}zetaleft(tfrac{1}{2}right)$ is the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{1}{sqrt{2pi n}}$, hence the problem boils down to finding the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{n^n}{n!e^n}$. As pointed out in the comments,



$$ W(x) = sum_{ngeq 1}frac{n^{n-1}(-1)^{n-1}}{n!}x^n $$
holds for any $xinleft(-frac{1}{e},frac{1}{e}right)$ by Lagrange inversion theorem, hence
$$ ze^{-z} W'(-ze^{-z})=sum_{ngeq 1}frac{n^n}{n!e^{nz}}z^{n}=frac{z}{1-z} =sum_{ngeq 1}z^ntag{1}$$
holds for any $zin(-W(e^{-1}),1)$. Pretty strange identity, I can give you that.

Similarly, over the same interval
$$ -W(-z e^{-z})=sum_{ngeq 1}frac{n^{n-1}}{n!e^{nz}}z^n = z tag{2}$$
$$ 1=sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n-1}-sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n}=frac{1}{1-z}-frac{z}{1-z}.tag{3}$$
Since $zeta(0)=-frac{1}{2}$, it should not be difficult to prove from $(1)$ and $(2)$ that the $zeta$-regularization of $sum_{ngeq 1}frac{n^n}{n!e^n}$ equals $-frac{2}{3}$ as wanted, for instance by computing $sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}$ for any $kinmathbb{N}$:
$$ sum_{ngeq 1}frac{n^{n-2}}{n!e^n}=int_{-1/e}^{1}frac{W(x)}{x},dx = frac{1}{2},qquad sum_{ngeq 1}frac{n^{n-3}}{n!e^n}=-int_{-1/e}^{1}frac{W(x)}{x}(1+log(-x)),dx=frac{5}{12} $$
$$ sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{7}{18},qquad sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{1631}{4320},$$
$$ sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}= frac{1}{Gamma(k)}int_{0}^{1}(1-x)(x-1-log x)^{k-1},dx.tag{4} $$
Indeed the substitution $x=e^{-s}$ in $(4)$ and the integral representation for the $zeta$ function complete the proof.






share|cite|improve this answer











$endgroup$



Well, $-frac{1}{sqrt{2pi}}zetaleft(tfrac{1}{2}right)$ is the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{1}{sqrt{2pi n}}$, hence the problem boils down to finding the $zeta$-regularization of the divergent series $sum_{ngeq 1}frac{n^n}{n!e^n}$. As pointed out in the comments,



$$ W(x) = sum_{ngeq 1}frac{n^{n-1}(-1)^{n-1}}{n!}x^n $$
holds for any $xinleft(-frac{1}{e},frac{1}{e}right)$ by Lagrange inversion theorem, hence
$$ ze^{-z} W'(-ze^{-z})=sum_{ngeq 1}frac{n^n}{n!e^{nz}}z^{n}=frac{z}{1-z} =sum_{ngeq 1}z^ntag{1}$$
holds for any $zin(-W(e^{-1}),1)$. Pretty strange identity, I can give you that.

Similarly, over the same interval
$$ -W(-z e^{-z})=sum_{ngeq 1}frac{n^{n-1}}{n!e^{nz}}z^n = z tag{2}$$
$$ 1=sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n-1}-sum_{ngeq 1}frac{n^{n}}{n!e^{nz}}z^{n}=frac{1}{1-z}-frac{z}{1-z}.tag{3}$$
Since $zeta(0)=-frac{1}{2}$, it should not be difficult to prove from $(1)$ and $(2)$ that the $zeta$-regularization of $sum_{ngeq 1}frac{n^n}{n!e^n}$ equals $-frac{2}{3}$ as wanted, for instance by computing $sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}$ for any $kinmathbb{N}$:
$$ sum_{ngeq 1}frac{n^{n-2}}{n!e^n}=int_{-1/e}^{1}frac{W(x)}{x},dx = frac{1}{2},qquad sum_{ngeq 1}frac{n^{n-3}}{n!e^n}=-int_{-1/e}^{1}frac{W(x)}{x}(1+log(-x)),dx=frac{5}{12} $$
$$ sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{7}{18},qquad sum_{ngeq 1}frac{n^{n-4}}{n!e^n}=frac{1631}{4320},$$
$$ sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}= frac{1}{Gamma(k)}int_{0}^{1}(1-x)(x-1-log x)^{k-1},dx.tag{4} $$
Indeed the substitution $x=e^{-s}$ in $(4)$ and the integral representation for the $zeta$ function complete the proof.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 9 '18 at 2:41

























answered Apr 9 '18 at 1:41









Jack D'AurizioJack D'Aurizio

288k33280660




288k33280660












  • $begingroup$
    The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
    $endgroup$
    – i707107
    Apr 10 '18 at 14:51










  • $begingroup$
    The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
    $endgroup$
    – Jack D'Aurizio
    Apr 10 '18 at 15:13










  • $begingroup$
    Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
    $endgroup$
    – i707107
    Apr 11 '18 at 18:43








  • 2




    $begingroup$
    Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
    $endgroup$
    – i707107
    Apr 11 '18 at 19:06






  • 1




    $begingroup$
    We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
    $endgroup$
    – i707107
    Apr 12 '18 at 1:39


















  • $begingroup$
    The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
    $endgroup$
    – i707107
    Apr 10 '18 at 14:51










  • $begingroup$
    The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
    $endgroup$
    – Jack D'Aurizio
    Apr 10 '18 at 15:13










  • $begingroup$
    Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
    $endgroup$
    – i707107
    Apr 11 '18 at 18:43








  • 2




    $begingroup$
    Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
    $endgroup$
    – i707107
    Apr 11 '18 at 19:06






  • 1




    $begingroup$
    We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
    $endgroup$
    – i707107
    Apr 12 '18 at 1:39
















$begingroup$
The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
$endgroup$
– i707107
Apr 10 '18 at 14:51




$begingroup$
The RHS of (4) requires $k$ to be natural number, but we need $k=-1$ for the value of the regularization. Then can you please clarify that step?
$endgroup$
– i707107
Apr 10 '18 at 14:51












$begingroup$
The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
$endgroup$
– Jack D'Aurizio
Apr 10 '18 at 15:13




$begingroup$
The RHS of $(4)$ requires $k$ to be a real number $>0$. On the other hand $(4)$ leads to an integral representation for $$sum_{ngeq 1}frac{n^{n-1-k}}{n!e^n}-frac{1}{n^{k+1}sqrt{2pi n}}$$ which can be analytically continued by integration by parts.
$endgroup$
– Jack D'Aurizio
Apr 10 '18 at 15:13












$begingroup$
Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
$endgroup$
– i707107
Apr 11 '18 at 18:43






$begingroup$
Thank you. I see that your method can generalize to the series $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$
$endgroup$
– i707107
Apr 11 '18 at 18:43






2




2




$begingroup$
Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
$endgroup$
– i707107
Apr 11 '18 at 19:06




$begingroup$
Just a little bit simpler formula than your (4), can be obtained either by integration by parts, or using $W'(ze^{-z})$, is $$sum_{ngeq 1} frac{n^n}{n!e^n n^s} = frac1{Gamma(s)} int_0^1 (x-1-log x)^{s-1} dx$$, which is valid at $Re(s)>frac12$.
$endgroup$
– i707107
Apr 11 '18 at 19:06




1




1




$begingroup$
We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
$endgroup$
– i707107
Apr 12 '18 at 1:39




$begingroup$
We have $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)=-frac 4{135}-frac{zeta(-1/2)}{sqrt{2pi}} + frac{zeta(1/2)}{12sqrt{2pi}}.$$
$endgroup$
– i707107
Apr 12 '18 at 1:39











5












$begingroup$

Taking $$Fleft(xright)=sum_{ngeq1}frac{n^{n-1}}{n!e^{n}}x^{n}-frac{1}{sqrt{2pi}}sum_{ngeq1}frac{x^{n}}{n^{3/2}}=-Wleft(-frac{x}{e}right)-frac{mathrm{Li}_{3/2}left(xright)}{sqrt{2pi}},,left|xright|<1$$ where $Wleft(xright)$ is the Lambert $W$ function and $mathrm{Li}_{3/2}left(xright)$ is the Polylogarithm function, we obtain, differentiating both sides,that $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)x^{n-1}=-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}$$ so $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)=lim_{xrightarrow1^{-}}left(-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}right).$$ Now, we know that $$mathrm{Li}_{v}left(zright)=left(Gammaleft(1-vright)left(1-zright)^{v-1}+zetaleft(vright)right)left(1+Oleft(left|1-zright|right)right),vneq1,,zrightarrow1$$ and now we claim $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1}{sqrt{2left(1-xright)}}-frac{2}{3}$$ as $xrightarrow1^{-}$. This is true because, since $$Wleft(zright)sim-1+sqrt{2ze+2}-frac{2}{3}eleft(z+frac{1}{e}right)$$ as $zrightarrow-1/e$, we have $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1-sqrt{2left(1-xright)}+frac{2}{3}left(1-xright)}{xsqrt{2left(1-xright)}-frac{2}{3}left(1-xright)x}$$ $$=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}left(frac{1}{1-sqrt{2-2x}/3}right)right)=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}sum_{kgeq0}left(frac{sqrt{2-2x}}{3}right)^{k}right)$$ $$=frac{1}{x}left(-frac{2}{3}+frac{1}{sqrt{2left(1-xright)}}+Oleft(sqrt{1-x}right)right)$$ then the claim.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    (+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:34










  • $begingroup$
    A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:51










  • $begingroup$
    @JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
    $endgroup$
    – Marco Cantarini
    Apr 9 '18 at 13:55
















5












$begingroup$

Taking $$Fleft(xright)=sum_{ngeq1}frac{n^{n-1}}{n!e^{n}}x^{n}-frac{1}{sqrt{2pi}}sum_{ngeq1}frac{x^{n}}{n^{3/2}}=-Wleft(-frac{x}{e}right)-frac{mathrm{Li}_{3/2}left(xright)}{sqrt{2pi}},,left|xright|<1$$ where $Wleft(xright)$ is the Lambert $W$ function and $mathrm{Li}_{3/2}left(xright)$ is the Polylogarithm function, we obtain, differentiating both sides,that $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)x^{n-1}=-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}$$ so $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)=lim_{xrightarrow1^{-}}left(-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}right).$$ Now, we know that $$mathrm{Li}_{v}left(zright)=left(Gammaleft(1-vright)left(1-zright)^{v-1}+zetaleft(vright)right)left(1+Oleft(left|1-zright|right)right),vneq1,,zrightarrow1$$ and now we claim $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1}{sqrt{2left(1-xright)}}-frac{2}{3}$$ as $xrightarrow1^{-}$. This is true because, since $$Wleft(zright)sim-1+sqrt{2ze+2}-frac{2}{3}eleft(z+frac{1}{e}right)$$ as $zrightarrow-1/e$, we have $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1-sqrt{2left(1-xright)}+frac{2}{3}left(1-xright)}{xsqrt{2left(1-xright)}-frac{2}{3}left(1-xright)x}$$ $$=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}left(frac{1}{1-sqrt{2-2x}/3}right)right)=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}sum_{kgeq0}left(frac{sqrt{2-2x}}{3}right)^{k}right)$$ $$=frac{1}{x}left(-frac{2}{3}+frac{1}{sqrt{2left(1-xright)}}+Oleft(sqrt{1-x}right)right)$$ then the claim.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    (+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:34










  • $begingroup$
    A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:51










  • $begingroup$
    @JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
    $endgroup$
    – Marco Cantarini
    Apr 9 '18 at 13:55














5












5








5





$begingroup$

Taking $$Fleft(xright)=sum_{ngeq1}frac{n^{n-1}}{n!e^{n}}x^{n}-frac{1}{sqrt{2pi}}sum_{ngeq1}frac{x^{n}}{n^{3/2}}=-Wleft(-frac{x}{e}right)-frac{mathrm{Li}_{3/2}left(xright)}{sqrt{2pi}},,left|xright|<1$$ where $Wleft(xright)$ is the Lambert $W$ function and $mathrm{Li}_{3/2}left(xright)$ is the Polylogarithm function, we obtain, differentiating both sides,that $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)x^{n-1}=-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}$$ so $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)=lim_{xrightarrow1^{-}}left(-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}right).$$ Now, we know that $$mathrm{Li}_{v}left(zright)=left(Gammaleft(1-vright)left(1-zright)^{v-1}+zetaleft(vright)right)left(1+Oleft(left|1-zright|right)right),vneq1,,zrightarrow1$$ and now we claim $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1}{sqrt{2left(1-xright)}}-frac{2}{3}$$ as $xrightarrow1^{-}$. This is true because, since $$Wleft(zright)sim-1+sqrt{2ze+2}-frac{2}{3}eleft(z+frac{1}{e}right)$$ as $zrightarrow-1/e$, we have $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1-sqrt{2left(1-xright)}+frac{2}{3}left(1-xright)}{xsqrt{2left(1-xright)}-frac{2}{3}left(1-xright)x}$$ $$=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}left(frac{1}{1-sqrt{2-2x}/3}right)right)=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}sum_{kgeq0}left(frac{sqrt{2-2x}}{3}right)^{k}right)$$ $$=frac{1}{x}left(-frac{2}{3}+frac{1}{sqrt{2left(1-xright)}}+Oleft(sqrt{1-x}right)right)$$ then the claim.






share|cite|improve this answer











$endgroup$



Taking $$Fleft(xright)=sum_{ngeq1}frac{n^{n-1}}{n!e^{n}}x^{n}-frac{1}{sqrt{2pi}}sum_{ngeq1}frac{x^{n}}{n^{3/2}}=-Wleft(-frac{x}{e}right)-frac{mathrm{Li}_{3/2}left(xright)}{sqrt{2pi}},,left|xright|<1$$ where $Wleft(xright)$ is the Lambert $W$ function and $mathrm{Li}_{3/2}left(xright)$ is the Polylogarithm function, we obtain, differentiating both sides,that $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)x^{n-1}=-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}$$ so $$sum_{ngeq1}left(frac{n^{n}}{n!e^{n}}-frac{1}{sqrt{2pi n}}right)=lim_{xrightarrow1^{-}}left(-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}-frac{mathrm{Li}_{1/2}left(xright)}{xsqrt{2pi}}right).$$ Now, we know that $$mathrm{Li}_{v}left(zright)=left(Gammaleft(1-vright)left(1-zright)^{v-1}+zetaleft(vright)right)left(1+Oleft(left|1-zright|right)right),vneq1,,zrightarrow1$$ and now we claim $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1}{sqrt{2left(1-xright)}}-frac{2}{3}$$ as $xrightarrow1^{-}$. This is true because, since $$Wleft(zright)sim-1+sqrt{2ze+2}-frac{2}{3}eleft(z+frac{1}{e}right)$$ as $zrightarrow-1/e$, we have $$-frac{Wleft(-frac{x}{e}right)}{xleft(Wleft(-frac{x}{e}right)+1right)}simfrac{1-sqrt{2left(1-xright)}+frac{2}{3}left(1-xright)}{xsqrt{2left(1-xright)}-frac{2}{3}left(1-xright)x}$$ $$=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}left(frac{1}{1-sqrt{2-2x}/3}right)right)=frac{1}{x}left(-1+frac{1}{sqrt{2left(1-xright)}}sum_{kgeq0}left(frac{sqrt{2-2x}}{3}right)^{k}right)$$ $$=frac{1}{x}left(-frac{2}{3}+frac{1}{sqrt{2left(1-xright)}}+Oleft(sqrt{1-x}right)right)$$ then the claim.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 17 '18 at 14:50

























answered Apr 9 '18 at 8:52









Marco CantariniMarco Cantarini

29.1k23372




29.1k23372








  • 2




    $begingroup$
    (+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:34










  • $begingroup$
    A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:51










  • $begingroup$
    @JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
    $endgroup$
    – Marco Cantarini
    Apr 9 '18 at 13:55














  • 2




    $begingroup$
    (+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:34










  • $begingroup$
    A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
    $endgroup$
    – Jack D'Aurizio
    Apr 9 '18 at 12:51










  • $begingroup$
    @JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
    $endgroup$
    – Marco Cantarini
    Apr 9 '18 at 13:55








2




2




$begingroup$
(+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
$endgroup$
– Jack D'Aurizio
Apr 9 '18 at 12:34




$begingroup$
(+1) This is a nice way of avoiding a double transformation via $mathcal{L},mathcal{L}^{-1}$. Good job, as usual. Is the next step to compute $$sum_{ngeq 1}left(frac{n^{n+1}}{n!e^n}-sqrt{frac{n}{2pi}}+frac{1}{12sqrt{2pi n}}right)$$ ?
$endgroup$
– Jack D'Aurizio
Apr 9 '18 at 12:34












$begingroup$
A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
$endgroup$
– Jack D'Aurizio
Apr 9 '18 at 12:51




$begingroup$
A minor fix: I believe $sqrt{2ze+1}$ should be $sqrt{2ze+2}$. It does not affect anything, the relevant term of the asymptotics stays $-frac{2}{3}(ez+1)$.
$endgroup$
– Jack D'Aurizio
Apr 9 '18 at 12:51












$begingroup$
@JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
$endgroup$
– Marco Cantarini
Apr 9 '18 at 13:55




$begingroup$
@JackD'Aurizio Thank you, fixed. I upvoted your answer this morning (as usual, I like your answers more than mine). Yes, I think the next step is the series you write. I'm not sure that my method works also in this case, probably there is something to change.
$endgroup$
– Marco Cantarini
Apr 9 '18 at 13:55











1












$begingroup$

This is a general answer to the followup question by Jack D'Aurizio.



Proposition




Let $ninmathbb{N}$. We have the asymptotic expansion
$$
n!sim sqrt{2pi n} frac{n^n}{e^n} left[ 1+ frac1{12n} +frac1{288n^2}-frac{139}{51840n^3}-frac{157}{2488320n^4}+cdots right]
$$




Note that this is not a convergent series, but an asymptotic expansion. The error in the truncated series is asymptotically equal to the first omitted term. Regard the series on the right as an element of the ring of power series over rational numbers $mathbb{Q}[[T]]$.
$$
S(T)=1+ frac1{12}T+frac1{288}T^2-frac{139}{51840}T^3-frac{157}{2488320}T^4 + cdots.
$$
Consider the multiplicative inverse of $S(T)$ in $mathbb{Q}[[T]]$.
$$
S^{-1}(T)=1-frac1{12}T+ g_2 T^2 + g_3 T^3 + g_4 T^4 + cdots.
$$
Let $Y_s(T)=sum_{n=0}^{infty} h_n(s) T^n inmathbb{Q}[s][[T]]$ be defined by
$$
left(frac12 T^2right)^{s-1}sum_{n=0}^{infty} h_n(s) T^n = left[ frac12 T^2 + frac13 T^3 + frac14 T^4+cdots right]^{s-1}.
$$
Then we have



Theorem




$$sum_{n=1}^{infty} n^pleft[ frac{n^n}{n!e^n}- frac1{sqrt{2pi n}} sum_{k=0}^p frac{g_k}{n^k}right]=(-2)^p p!h_{2p+1}(-p) - frac1{sqrt{2pi}}sum_{k=0}^p g_k zetaleft(k+frac12-pright).$$




With $p=0$, it is the original series
$$
sum_{n=1}^{infty} left[frac{n^n}{n!e^n} - frac1{sqrt{2pi n}}right]=-frac23 - frac{zetaleft(frac12right)}{sqrt{2pi}}
$$



With $p=1$, it gives the value of
$$
sum_{n=1}^{infty} left[ frac{n^{n+1}}{n!e^n} - sqrt{frac{n}{2pi}} + frac{1}{12sqrt{2pi n}}right] = -frac 4{135} - frac{zetaleft(-frac12right)}{sqrt{2pi}} + frac{zetaleft(frac12right)}{12sqrt{2pi}}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
    $endgroup$
    – Marco Cantarini
    Apr 14 '18 at 7:00


















1












$begingroup$

This is a general answer to the followup question by Jack D'Aurizio.



Proposition




Let $ninmathbb{N}$. We have the asymptotic expansion
$$
n!sim sqrt{2pi n} frac{n^n}{e^n} left[ 1+ frac1{12n} +frac1{288n^2}-frac{139}{51840n^3}-frac{157}{2488320n^4}+cdots right]
$$




Note that this is not a convergent series, but an asymptotic expansion. The error in the truncated series is asymptotically equal to the first omitted term. Regard the series on the right as an element of the ring of power series over rational numbers $mathbb{Q}[[T]]$.
$$
S(T)=1+ frac1{12}T+frac1{288}T^2-frac{139}{51840}T^3-frac{157}{2488320}T^4 + cdots.
$$
Consider the multiplicative inverse of $S(T)$ in $mathbb{Q}[[T]]$.
$$
S^{-1}(T)=1-frac1{12}T+ g_2 T^2 + g_3 T^3 + g_4 T^4 + cdots.
$$
Let $Y_s(T)=sum_{n=0}^{infty} h_n(s) T^n inmathbb{Q}[s][[T]]$ be defined by
$$
left(frac12 T^2right)^{s-1}sum_{n=0}^{infty} h_n(s) T^n = left[ frac12 T^2 + frac13 T^3 + frac14 T^4+cdots right]^{s-1}.
$$
Then we have



Theorem




$$sum_{n=1}^{infty} n^pleft[ frac{n^n}{n!e^n}- frac1{sqrt{2pi n}} sum_{k=0}^p frac{g_k}{n^k}right]=(-2)^p p!h_{2p+1}(-p) - frac1{sqrt{2pi}}sum_{k=0}^p g_k zetaleft(k+frac12-pright).$$




With $p=0$, it is the original series
$$
sum_{n=1}^{infty} left[frac{n^n}{n!e^n} - frac1{sqrt{2pi n}}right]=-frac23 - frac{zetaleft(frac12right)}{sqrt{2pi}}
$$



With $p=1$, it gives the value of
$$
sum_{n=1}^{infty} left[ frac{n^{n+1}}{n!e^n} - sqrt{frac{n}{2pi}} + frac{1}{12sqrt{2pi n}}right] = -frac 4{135} - frac{zetaleft(-frac12right)}{sqrt{2pi}} + frac{zetaleft(frac12right)}{12sqrt{2pi}}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    (+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
    $endgroup$
    – Marco Cantarini
    Apr 14 '18 at 7:00
















1












1








1





$begingroup$

This is a general answer to the followup question by Jack D'Aurizio.



Proposition




Let $ninmathbb{N}$. We have the asymptotic expansion
$$
n!sim sqrt{2pi n} frac{n^n}{e^n} left[ 1+ frac1{12n} +frac1{288n^2}-frac{139}{51840n^3}-frac{157}{2488320n^4}+cdots right]
$$




Note that this is not a convergent series, but an asymptotic expansion. The error in the truncated series is asymptotically equal to the first omitted term. Regard the series on the right as an element of the ring of power series over rational numbers $mathbb{Q}[[T]]$.
$$
S(T)=1+ frac1{12}T+frac1{288}T^2-frac{139}{51840}T^3-frac{157}{2488320}T^4 + cdots.
$$
Consider the multiplicative inverse of $S(T)$ in $mathbb{Q}[[T]]$.
$$
S^{-1}(T)=1-frac1{12}T+ g_2 T^2 + g_3 T^3 + g_4 T^4 + cdots.
$$
Let $Y_s(T)=sum_{n=0}^{infty} h_n(s) T^n inmathbb{Q}[s][[T]]$ be defined by
$$
left(frac12 T^2right)^{s-1}sum_{n=0}^{infty} h_n(s) T^n = left[ frac12 T^2 + frac13 T^3 + frac14 T^4+cdots right]^{s-1}.
$$
Then we have



Theorem




$$sum_{n=1}^{infty} n^pleft[ frac{n^n}{n!e^n}- frac1{sqrt{2pi n}} sum_{k=0}^p frac{g_k}{n^k}right]=(-2)^p p!h_{2p+1}(-p) - frac1{sqrt{2pi}}sum_{k=0}^p g_k zetaleft(k+frac12-pright).$$




With $p=0$, it is the original series
$$
sum_{n=1}^{infty} left[frac{n^n}{n!e^n} - frac1{sqrt{2pi n}}right]=-frac23 - frac{zetaleft(frac12right)}{sqrt{2pi}}
$$



With $p=1$, it gives the value of
$$
sum_{n=1}^{infty} left[ frac{n^{n+1}}{n!e^n} - sqrt{frac{n}{2pi}} + frac{1}{12sqrt{2pi n}}right] = -frac 4{135} - frac{zetaleft(-frac12right)}{sqrt{2pi}} + frac{zetaleft(frac12right)}{12sqrt{2pi}}.
$$






share|cite|improve this answer











$endgroup$



This is a general answer to the followup question by Jack D'Aurizio.



Proposition




Let $ninmathbb{N}$. We have the asymptotic expansion
$$
n!sim sqrt{2pi n} frac{n^n}{e^n} left[ 1+ frac1{12n} +frac1{288n^2}-frac{139}{51840n^3}-frac{157}{2488320n^4}+cdots right]
$$




Note that this is not a convergent series, but an asymptotic expansion. The error in the truncated series is asymptotically equal to the first omitted term. Regard the series on the right as an element of the ring of power series over rational numbers $mathbb{Q}[[T]]$.
$$
S(T)=1+ frac1{12}T+frac1{288}T^2-frac{139}{51840}T^3-frac{157}{2488320}T^4 + cdots.
$$
Consider the multiplicative inverse of $S(T)$ in $mathbb{Q}[[T]]$.
$$
S^{-1}(T)=1-frac1{12}T+ g_2 T^2 + g_3 T^3 + g_4 T^4 + cdots.
$$
Let $Y_s(T)=sum_{n=0}^{infty} h_n(s) T^n inmathbb{Q}[s][[T]]$ be defined by
$$
left(frac12 T^2right)^{s-1}sum_{n=0}^{infty} h_n(s) T^n = left[ frac12 T^2 + frac13 T^3 + frac14 T^4+cdots right]^{s-1}.
$$
Then we have



Theorem




$$sum_{n=1}^{infty} n^pleft[ frac{n^n}{n!e^n}- frac1{sqrt{2pi n}} sum_{k=0}^p frac{g_k}{n^k}right]=(-2)^p p!h_{2p+1}(-p) - frac1{sqrt{2pi}}sum_{k=0}^p g_k zetaleft(k+frac12-pright).$$




With $p=0$, it is the original series
$$
sum_{n=1}^{infty} left[frac{n^n}{n!e^n} - frac1{sqrt{2pi n}}right]=-frac23 - frac{zetaleft(frac12right)}{sqrt{2pi}}
$$



With $p=1$, it gives the value of
$$
sum_{n=1}^{infty} left[ frac{n^{n+1}}{n!e^n} - sqrt{frac{n}{2pi}} + frac{1}{12sqrt{2pi n}}right] = -frac 4{135} - frac{zetaleft(-frac12right)}{sqrt{2pi}} + frac{zetaleft(frac12right)}{12sqrt{2pi}}.
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 13 '18 at 21:44

























answered Apr 13 '18 at 21:38









i707107i707107

11.9k21547




11.9k21547












  • $begingroup$
    (+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
    $endgroup$
    – Marco Cantarini
    Apr 14 '18 at 7:00




















  • $begingroup$
    (+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
    $endgroup$
    – Marco Cantarini
    Apr 14 '18 at 7:00


















$begingroup$
(+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
$endgroup$
– Marco Cantarini
Apr 14 '18 at 7:00






$begingroup$
(+1) Very nice!!! My remark was wrong, thank you to find the right sense! :D
$endgroup$
– Marco Cantarini
Apr 14 '18 at 7:00




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727642%2fa-series-about-n-and-riemann-zeta-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

What does “Dominus providebit” mean?

Antonio Litta Visconti Arese