Very Hard System of Equations
$begingroup$
Solve the system of equations:
begin{cases}
sqrt{xy}(x + 3y)(3x + y) = 14 \
(x + y)(x^2 + y^2 + 14xy) = 36.
end{cases}
Suppose $x + y = m$ and $xy = n$. So I get
begin{cases}
(3m^2+4n) sqrt n = 14 \
m^3+12mn=36
end{cases}
So can express $m$ in terms of $n$ but I want only real solution.
Is there a faster way?
algebra-precalculus systems-of-equations substitution
$endgroup$
add a comment |
$begingroup$
Solve the system of equations:
begin{cases}
sqrt{xy}(x + 3y)(3x + y) = 14 \
(x + y)(x^2 + y^2 + 14xy) = 36.
end{cases}
Suppose $x + y = m$ and $xy = n$. So I get
begin{cases}
(3m^2+4n) sqrt n = 14 \
m^3+12mn=36
end{cases}
So can express $m$ in terms of $n$ but I want only real solution.
Is there a faster way?
algebra-precalculus systems-of-equations substitution
$endgroup$
1
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22
add a comment |
$begingroup$
Solve the system of equations:
begin{cases}
sqrt{xy}(x + 3y)(3x + y) = 14 \
(x + y)(x^2 + y^2 + 14xy) = 36.
end{cases}
Suppose $x + y = m$ and $xy = n$. So I get
begin{cases}
(3m^2+4n) sqrt n = 14 \
m^3+12mn=36
end{cases}
So can express $m$ in terms of $n$ but I want only real solution.
Is there a faster way?
algebra-precalculus systems-of-equations substitution
$endgroup$
Solve the system of equations:
begin{cases}
sqrt{xy}(x + 3y)(3x + y) = 14 \
(x + y)(x^2 + y^2 + 14xy) = 36.
end{cases}
Suppose $x + y = m$ and $xy = n$. So I get
begin{cases}
(3m^2+4n) sqrt n = 14 \
m^3+12mn=36
end{cases}
So can express $m$ in terms of $n$ but I want only real solution.
Is there a faster way?
algebra-precalculus systems-of-equations substitution
algebra-precalculus systems-of-equations substitution
edited Jan 18 at 12:41
Michael Rozenberg
103k1891195
103k1891195
asked Jan 18 at 2:44
HeartHeart
28918
28918
1
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22
add a comment |
1
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22
1
1
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $x+y=2ksqrt{xy}.$
Thus, by AM-GM $kgeq1$ and from the first and the second equations we obtain:
$$18sqrt{xy}(3x^2+3y^2+10xy)=7(x+y)(x^2+y^2+14xy)$$ or
$$18(12k^2+4)=7cdot2k(4k^2+12)$$ or
$$7k^3-27k^2+21k-9=0$$ or
$$7k^3-21k^2-6k^2+18k+3k-9=0$$ or
$$(k-3)(7k^2-6k+3)=0,$$ which gives $k=3$ and $$x+y=6sqrt{xy}.$$
Can you end it now?
$endgroup$
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
add a comment |
$begingroup$
Solving the second equation for $n$ we get $$n=-1/12,{frac {{m}^{3}-36}{m}}$$ for $$mneq 0$$ plugging this in your first equation we get
$$1/6, left( 3,{m}^{2}-1/3,{frac {{m}^{3}-36}{m}} right) sqrt {-3
,{frac {{m}^{3}-36}{m}}}=14
$$
so now we square and factorize this equation we obtain:
$$-16, left( m-3 right) left( {m}^{2}+3 right) left( {m}^{2}+3,
m+3 right) left( {m}^{2}-3,m+3 right) left( {m}^{2}+3,m+9
right)
=0$$
I hope you will find all solutions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077771%2fvery-hard-system-of-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $x+y=2ksqrt{xy}.$
Thus, by AM-GM $kgeq1$ and from the first and the second equations we obtain:
$$18sqrt{xy}(3x^2+3y^2+10xy)=7(x+y)(x^2+y^2+14xy)$$ or
$$18(12k^2+4)=7cdot2k(4k^2+12)$$ or
$$7k^3-27k^2+21k-9=0$$ or
$$7k^3-21k^2-6k^2+18k+3k-9=0$$ or
$$(k-3)(7k^2-6k+3)=0,$$ which gives $k=3$ and $$x+y=6sqrt{xy}.$$
Can you end it now?
$endgroup$
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
add a comment |
$begingroup$
Let $x+y=2ksqrt{xy}.$
Thus, by AM-GM $kgeq1$ and from the first and the second equations we obtain:
$$18sqrt{xy}(3x^2+3y^2+10xy)=7(x+y)(x^2+y^2+14xy)$$ or
$$18(12k^2+4)=7cdot2k(4k^2+12)$$ or
$$7k^3-27k^2+21k-9=0$$ or
$$7k^3-21k^2-6k^2+18k+3k-9=0$$ or
$$(k-3)(7k^2-6k+3)=0,$$ which gives $k=3$ and $$x+y=6sqrt{xy}.$$
Can you end it now?
$endgroup$
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
add a comment |
$begingroup$
Let $x+y=2ksqrt{xy}.$
Thus, by AM-GM $kgeq1$ and from the first and the second equations we obtain:
$$18sqrt{xy}(3x^2+3y^2+10xy)=7(x+y)(x^2+y^2+14xy)$$ or
$$18(12k^2+4)=7cdot2k(4k^2+12)$$ or
$$7k^3-27k^2+21k-9=0$$ or
$$7k^3-21k^2-6k^2+18k+3k-9=0$$ or
$$(k-3)(7k^2-6k+3)=0,$$ which gives $k=3$ and $$x+y=6sqrt{xy}.$$
Can you end it now?
$endgroup$
Let $x+y=2ksqrt{xy}.$
Thus, by AM-GM $kgeq1$ and from the first and the second equations we obtain:
$$18sqrt{xy}(3x^2+3y^2+10xy)=7(x+y)(x^2+y^2+14xy)$$ or
$$18(12k^2+4)=7cdot2k(4k^2+12)$$ or
$$7k^3-27k^2+21k-9=0$$ or
$$7k^3-21k^2-6k^2+18k+3k-9=0$$ or
$$(k-3)(7k^2-6k+3)=0,$$ which gives $k=3$ and $$x+y=6sqrt{xy}.$$
Can you end it now?
answered Jan 18 at 7:06
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
add a comment |
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
Yes thank you for good solution :)
$endgroup$
– Heart
Jan 18 at 14:34
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
$begingroup$
@Heart You are welcome!
$endgroup$
– Michael Rozenberg
Jan 18 at 17:02
add a comment |
$begingroup$
Solving the second equation for $n$ we get $$n=-1/12,{frac {{m}^{3}-36}{m}}$$ for $$mneq 0$$ plugging this in your first equation we get
$$1/6, left( 3,{m}^{2}-1/3,{frac {{m}^{3}-36}{m}} right) sqrt {-3
,{frac {{m}^{3}-36}{m}}}=14
$$
so now we square and factorize this equation we obtain:
$$-16, left( m-3 right) left( {m}^{2}+3 right) left( {m}^{2}+3,
m+3 right) left( {m}^{2}-3,m+3 right) left( {m}^{2}+3,m+9
right)
=0$$
I hope you will find all solutions.
$endgroup$
add a comment |
$begingroup$
Solving the second equation for $n$ we get $$n=-1/12,{frac {{m}^{3}-36}{m}}$$ for $$mneq 0$$ plugging this in your first equation we get
$$1/6, left( 3,{m}^{2}-1/3,{frac {{m}^{3}-36}{m}} right) sqrt {-3
,{frac {{m}^{3}-36}{m}}}=14
$$
so now we square and factorize this equation we obtain:
$$-16, left( m-3 right) left( {m}^{2}+3 right) left( {m}^{2}+3,
m+3 right) left( {m}^{2}-3,m+3 right) left( {m}^{2}+3,m+9
right)
=0$$
I hope you will find all solutions.
$endgroup$
add a comment |
$begingroup$
Solving the second equation for $n$ we get $$n=-1/12,{frac {{m}^{3}-36}{m}}$$ for $$mneq 0$$ plugging this in your first equation we get
$$1/6, left( 3,{m}^{2}-1/3,{frac {{m}^{3}-36}{m}} right) sqrt {-3
,{frac {{m}^{3}-36}{m}}}=14
$$
so now we square and factorize this equation we obtain:
$$-16, left( m-3 right) left( {m}^{2}+3 right) left( {m}^{2}+3,
m+3 right) left( {m}^{2}-3,m+3 right) left( {m}^{2}+3,m+9
right)
=0$$
I hope you will find all solutions.
$endgroup$
Solving the second equation for $n$ we get $$n=-1/12,{frac {{m}^{3}-36}{m}}$$ for $$mneq 0$$ plugging this in your first equation we get
$$1/6, left( 3,{m}^{2}-1/3,{frac {{m}^{3}-36}{m}} right) sqrt {-3
,{frac {{m}^{3}-36}{m}}}=14
$$
so now we square and factorize this equation we obtain:
$$-16, left( m-3 right) left( {m}^{2}+3 right) left( {m}^{2}+3,
m+3 right) left( {m}^{2}-3,m+3 right) left( {m}^{2}+3,m+9
right)
=0$$
I hope you will find all solutions.
answered Jan 18 at 3:23
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.2k42865
75.2k42865
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077771%2fvery-hard-system-of-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It will help you greatly to note that these equations are transposable, that is, $(x,y)=(X,Y)$ is a solution, so too is $(x,y)=(Y,X)$.
$endgroup$
– Rhys Hughes
Jan 18 at 3:22