Find the limit of $e^x/2^x$ as $x$ approaches infinity
$begingroup$
I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
I tried to use L'Hopital's rule:
$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$
which doesn't really help. Is there any way to compute this limit? Thanks!
limits
$endgroup$
add a comment |
$begingroup$
I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
I tried to use L'Hopital's rule:
$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$
which doesn't really help. Is there any way to compute this limit? Thanks!
limits
$endgroup$
3
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
3
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
2
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32
add a comment |
$begingroup$
I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
I tried to use L'Hopital's rule:
$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$
which doesn't really help. Is there any way to compute this limit? Thanks!
limits
$endgroup$
I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
I tried to use L'Hopital's rule:
$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$
which doesn't really help. Is there any way to compute this limit? Thanks!
limits
limits
edited Jan 18 at 21:08
Antonio Vargas
20.7k245111
20.7k245111
asked Jan 18 at 3:20
Yifei HeYifei He
1286
1286
3
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
3
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
2
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32
add a comment |
3
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
3
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
2
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32
3
3
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
3
3
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
2
2
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that
$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$
because $e > 2$ so $frac{e}{2} > 1$.
$endgroup$
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
add a comment |
$begingroup$
HINT
$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$
Then:
$$lim_{xtoinfty}{x(1-ln 2)}= ?$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077793%2ffind-the-limit-of-ex-2x-as-x-approaches-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$
because $e > 2$ so $frac{e}{2} > 1$.
$endgroup$
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
add a comment |
$begingroup$
Note that
$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$
because $e > 2$ so $frac{e}{2} > 1$.
$endgroup$
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
add a comment |
$begingroup$
Note that
$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$
because $e > 2$ so $frac{e}{2} > 1$.
$endgroup$
Note that
$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$
because $e > 2$ so $frac{e}{2} > 1$.
answered Jan 18 at 3:28
John OmielanJohn Omielan
2,626212
2,626212
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
add a comment |
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
1
1
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
$begingroup$
Yeah, it can't get any simpler than this approach.
$endgroup$
– Randall
Jan 18 at 3:29
add a comment |
$begingroup$
HINT
$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$
Then:
$$lim_{xtoinfty}{x(1-ln 2)}= ?$$
$endgroup$
add a comment |
$begingroup$
HINT
$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$
Then:
$$lim_{xtoinfty}{x(1-ln 2)}= ?$$
$endgroup$
add a comment |
$begingroup$
HINT
$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$
Then:
$$lim_{xtoinfty}{x(1-ln 2)}= ?$$
$endgroup$
HINT
$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$
Then:
$$lim_{xtoinfty}{x(1-ln 2)}= ?$$
answered Jan 18 at 3:26
Rhys HughesRhys Hughes
6,4041530
6,4041530
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077793%2ffind-the-limit-of-ex-2x-as-x-approaches-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22
3
$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28
2
$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32