Lipschitz constant of a matrix
$begingroup$
I am studying the Lipschitz continuity and trying to solve the following question:
If a function $f(x)= Ax$ is defined for $x in mathbb{R}^2$ with $A= begin{bmatrix}
a & b \
c & d
end{bmatrix}$, then find a constant L such that
begin{eqnarray*}
||Ax - Ay|| le L||x - y||, x, y in mathbb{R}^2.
end{eqnarray*}
I understand how to find the Lipschitz constant in $mathbb{R}$, but I have no idea about how to find it in $mathbb{R}^2$.
matrices multivariable-calculus continuity lipschitz-functions
$endgroup$
add a comment |
$begingroup$
I am studying the Lipschitz continuity and trying to solve the following question:
If a function $f(x)= Ax$ is defined for $x in mathbb{R}^2$ with $A= begin{bmatrix}
a & b \
c & d
end{bmatrix}$, then find a constant L such that
begin{eqnarray*}
||Ax - Ay|| le L||x - y||, x, y in mathbb{R}^2.
end{eqnarray*}
I understand how to find the Lipschitz constant in $mathbb{R}$, but I have no idea about how to find it in $mathbb{R}^2$.
matrices multivariable-calculus continuity lipschitz-functions
$endgroup$
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04
add a comment |
$begingroup$
I am studying the Lipschitz continuity and trying to solve the following question:
If a function $f(x)= Ax$ is defined for $x in mathbb{R}^2$ with $A= begin{bmatrix}
a & b \
c & d
end{bmatrix}$, then find a constant L such that
begin{eqnarray*}
||Ax - Ay|| le L||x - y||, x, y in mathbb{R}^2.
end{eqnarray*}
I understand how to find the Lipschitz constant in $mathbb{R}$, but I have no idea about how to find it in $mathbb{R}^2$.
matrices multivariable-calculus continuity lipschitz-functions
$endgroup$
I am studying the Lipschitz continuity and trying to solve the following question:
If a function $f(x)= Ax$ is defined for $x in mathbb{R}^2$ with $A= begin{bmatrix}
a & b \
c & d
end{bmatrix}$, then find a constant L such that
begin{eqnarray*}
||Ax - Ay|| le L||x - y||, x, y in mathbb{R}^2.
end{eqnarray*}
I understand how to find the Lipschitz constant in $mathbb{R}$, but I have no idea about how to find it in $mathbb{R}^2$.
matrices multivariable-calculus continuity lipschitz-functions
matrices multivariable-calculus continuity lipschitz-functions
edited Jan 18 at 5:28
J.Ross
asked Jan 18 at 3:54
J.RossJ.Ross
114
114
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04
add a comment |
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For the Frobenius norm, given by $midmid Amidmid=sqrt{sum_{i=1}^nsum_{j=1}^mmid a_{ij}mid^2}$.
we get $midmid Ax_1-Ax_2midmidlemidmid Amidmidcdotmidmid x_1-x_2midmidle2operatorname{max}{mid amid,mid bmid,mid cmid,mid dmid}midmid x_1-x_2midmid$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077814%2flipschitz-constant-of-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the Frobenius norm, given by $midmid Amidmid=sqrt{sum_{i=1}^nsum_{j=1}^mmid a_{ij}mid^2}$.
we get $midmid Ax_1-Ax_2midmidlemidmid Amidmidcdotmidmid x_1-x_2midmidle2operatorname{max}{mid amid,mid bmid,mid cmid,mid dmid}midmid x_1-x_2midmid$.
$endgroup$
add a comment |
$begingroup$
For the Frobenius norm, given by $midmid Amidmid=sqrt{sum_{i=1}^nsum_{j=1}^mmid a_{ij}mid^2}$.
we get $midmid Ax_1-Ax_2midmidlemidmid Amidmidcdotmidmid x_1-x_2midmidle2operatorname{max}{mid amid,mid bmid,mid cmid,mid dmid}midmid x_1-x_2midmid$.
$endgroup$
add a comment |
$begingroup$
For the Frobenius norm, given by $midmid Amidmid=sqrt{sum_{i=1}^nsum_{j=1}^mmid a_{ij}mid^2}$.
we get $midmid Ax_1-Ax_2midmidlemidmid Amidmidcdotmidmid x_1-x_2midmidle2operatorname{max}{mid amid,mid bmid,mid cmid,mid dmid}midmid x_1-x_2midmid$.
$endgroup$
For the Frobenius norm, given by $midmid Amidmid=sqrt{sum_{i=1}^nsum_{j=1}^mmid a_{ij}mid^2}$.
we get $midmid Ax_1-Ax_2midmidlemidmid Amidmidcdotmidmid x_1-x_2midmidle2operatorname{max}{mid amid,mid bmid,mid cmid,mid dmid}midmid x_1-x_2midmid$.
edited Jan 18 at 5:06
answered Jan 18 at 4:57
Chris CusterChris Custer
13.2k3827
13.2k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077814%2flipschitz-constant-of-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Presumably, you want a constant $L$ such that $| Ax_{1} -Ax_{2}| leq L | x_{1}-x_{2} |$, right? What do you know about the norm of the matrix $A$?
$endgroup$
– Brian Borchers
Jan 18 at 4:04