Finding the function of these numbers $1, 2, 5, 13, 34, 89, 233, 610$
$begingroup$
Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers
calculus
$endgroup$
|
show 1 more comment
$begingroup$
Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers
calculus
$endgroup$
1
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15
|
show 1 more comment
$begingroup$
Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers
calculus
$endgroup$
Firstly I used the differences between them but I found the numbers return again.
How can I find the function of these numbers
calculus
calculus
asked Dec 5 '14 at 17:35
E.H.EE.H.E
15.7k11966
15.7k11966
1
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15
|
show 1 more comment
1
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15
1
1
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15
|
show 1 more comment
6 Answers
6
active
oldest
votes
$begingroup$
Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.
$endgroup$
add a comment |
$begingroup$
$a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$
$endgroup$
add a comment |
$begingroup$
Let $n_{1} = 1$. Then,
$n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.
$endgroup$
add a comment |
$begingroup$
1053253
${{
left({1+sqrt5}over2right)^n
-left({1-sqrt5}over2right)^n
}oversqrt5}$, where $n$ is of odd parity
$endgroup$
add a comment |
$begingroup$
this is the positive numbers of the Fibonacci numbers in Z.
What I mean:
public class MySeedFibbo {
public static void main(String args) {
List<Integer> init = Arrays.asList(1, 1);
Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
}
}
Result if you run this code in Java SE 8 :
0
1
-1
2
-3
5
-8
13
-21
34
-55
89
-144
233
-377
610
-987
1597
Modify the last line like this:
negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});
And we get only the positive numbers which form the sequence you're looking for.
$endgroup$
add a comment |
$begingroup$
I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
end{align}$$
If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1053253%2ffinding-the-function-of-these-numbers-1-2-5-13-34-89-233-610%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.
$endgroup$
add a comment |
$begingroup$
Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.
$endgroup$
add a comment |
$begingroup$
Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.
$endgroup$
Too long for a comment; the method for detecting polynomial sequences is the calculus of differences and well documented. Conway and Guy give (not their invention) a variant that detects sequences based on exponentials, including Fibonacci or every other Fibonacci as you have here. I know i photocopied a few pages giving the technique, I will see if I can find them. Note that the book is extremely informal.
answered Dec 5 '14 at 18:58
Will JagyWill Jagy
102k5101199
102k5101199
add a comment |
add a comment |
$begingroup$
$a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$
$endgroup$
add a comment |
$begingroup$
$a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$
$endgroup$
add a comment |
$begingroup$
$a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$
$endgroup$
$a_0=1,a_1=2$ and for $ngeq2$ $a_n=3a_{n-1}-a_{n-2}$
answered Dec 5 '14 at 17:38
user155385
add a comment |
add a comment |
$begingroup$
Let $n_{1} = 1$. Then,
$n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.
$endgroup$
add a comment |
$begingroup$
Let $n_{1} = 1$. Then,
$n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.
$endgroup$
add a comment |
$begingroup$
Let $n_{1} = 1$. Then,
$n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.
$endgroup$
Let $n_{1} = 1$. Then,
$n_{k+1} = n_{k}+ sum_{j=1}^{k} n_{j}, $ for $k geq 1$.
answered Dec 5 '14 at 17:39
Alex SilvaAlex Silva
2,70531332
2,70531332
add a comment |
add a comment |
$begingroup$
1053253
${{
left({1+sqrt5}over2right)^n
-left({1-sqrt5}over2right)^n
}oversqrt5}$, where $n$ is of odd parity
$endgroup$
add a comment |
$begingroup$
1053253
${{
left({1+sqrt5}over2right)^n
-left({1-sqrt5}over2right)^n
}oversqrt5}$, where $n$ is of odd parity
$endgroup$
add a comment |
$begingroup$
1053253
${{
left({1+sqrt5}over2right)^n
-left({1-sqrt5}over2right)^n
}oversqrt5}$, where $n$ is of odd parity
$endgroup$
1053253
${{
left({1+sqrt5}over2right)^n
-left({1-sqrt5}over2right)^n
}oversqrt5}$, where $n$ is of odd parity
answered Dec 6 '14 at 0:17
Senex Ægypti ParviSenex Ægypti Parvi
2,2031816
2,2031816
add a comment |
add a comment |
$begingroup$
this is the positive numbers of the Fibonacci numbers in Z.
What I mean:
public class MySeedFibbo {
public static void main(String args) {
List<Integer> init = Arrays.asList(1, 1);
Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
}
}
Result if you run this code in Java SE 8 :
0
1
-1
2
-3
5
-8
13
-21
34
-55
89
-144
233
-377
610
-987
1597
Modify the last line like this:
negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});
And we get only the positive numbers which form the sequence you're looking for.
$endgroup$
add a comment |
$begingroup$
this is the positive numbers of the Fibonacci numbers in Z.
What I mean:
public class MySeedFibbo {
public static void main(String args) {
List<Integer> init = Arrays.asList(1, 1);
Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
}
}
Result if you run this code in Java SE 8 :
0
1
-1
2
-3
5
-8
13
-21
34
-55
89
-144
233
-377
610
-987
1597
Modify the last line like this:
negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});
And we get only the positive numbers which form the sequence you're looking for.
$endgroup$
add a comment |
$begingroup$
this is the positive numbers of the Fibonacci numbers in Z.
What I mean:
public class MySeedFibbo {
public static void main(String args) {
List<Integer> init = Arrays.asList(1, 1);
Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
}
}
Result if you run this code in Java SE 8 :
0
1
-1
2
-3
5
-8
13
-21
34
-55
89
-144
233
-377
610
-987
1597
Modify the last line like this:
negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});
And we get only the positive numbers which form the sequence you're looking for.
$endgroup$
this is the positive numbers of the Fibonacci numbers in Z.
What I mean:
public class MySeedFibbo {
public static void main(String args) {
List<Integer> init = Arrays.asList(1, 1);
Stream<List<Integer>> negativeFib = Stream.iterate(init, l -> Arrays.asList(l.get(1) - l.get(0),l.get(0)));
negativeFib.limit(15).forEach(l->System.out.println(l.get(1)));
}
}
Result if you run this code in Java SE 8 :
0
1
-1
2
-3
5
-8
13
-21
34
-55
89
-144
233
-377
610
-987
1597
Modify the last line like this:
negativeFib.limit(20).forEach(l->{ if(l.get(1)>0) System.out.println(l.get(1));});
And we get only the positive numbers which form the sequence you're looking for.
edited Jan 9 at 1:42
answered Jan 9 at 1:34
moldoveanmoldovean
1114
1114
add a comment |
add a comment |
$begingroup$
I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
end{align}$$
If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.
$endgroup$
add a comment |
$begingroup$
I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
end{align}$$
If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.
$endgroup$
add a comment |
$begingroup$
I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
end{align}$$
If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.
$endgroup$
I happened to notice each value is twice the previous value plus all the values before that. For example, $$13=2(5)+2+1$$ The sequence has $a_1=1$ and $$a_n=2a_{n-1}+sum_{k=1}^{n-2}a_k$$
But then $$a_{n-1}=2a_{n-2}+sum_{k=1}^{n-3}a_k$$ and subtracting left sides and right sides: $$a_n-a_{n-1}=2a_{n-1}-a_{n-2}$$ So $$a_n=3a_{n-1}-a_{n-2}$$ and $$a_{n-1}=a_{n-1}$$ So $$
begin{align}begin{bmatrix}a_n\ a_{n-1}end{bmatrix}&=begin{bmatrix}3&-1\1&0end{bmatrix}begin{bmatrix}a_{n-1}\ a_{n-2}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}a_{2}\ a_{1}end{bmatrix}\
&=begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
implies a_n&=begin{bmatrix}1&0end{bmatrix}begin{bmatrix}3&-1\1&0end{bmatrix}^{n-2}begin{bmatrix}2\ 1end{bmatrix}\
end{align}$$
If you want, you can diagonalize the matrix and express the formula for $a_n$ as a linear combination of powers of the eigenvalues.
answered Jan 9 at 8:28
alex.jordanalex.jordan
39k560120
39k560120
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1053253%2ffinding-the-function-of-these-numbers-1-2-5-13-34-89-233-610%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Think Fibonacci.
$endgroup$
– André Nicolas
Dec 5 '14 at 17:37
$begingroup$
also, maybe under it chart out the partial sums
$endgroup$
– turkeyhundt
Dec 5 '14 at 17:38
$begingroup$
$f(n) = 3f(n-1) - f(n-2)$
$endgroup$
– peterwhy
Dec 5 '14 at 17:39
$begingroup$
It's Pisot sequences.
$endgroup$
– Tacet
Dec 6 '14 at 0:29
$begingroup$
The best way to find a sequence like this is to just put the first whatever terms into oeis.org
$endgroup$
– GFauxPas
Dec 19 '14 at 19:15