Image of unit disk under inversion - Mobius transformations
$begingroup$
I am trying to find the image of ${z in mathbb{C} : |z| < 1}$ under $f(z) = frac{1}{z}$
Let $$w = frac{1}{z} Rightarrow z = frac{1}{w} = frac{1}{u+iv} = frac{u-iv}{u^2 + v^2}$$
if $w = u +iv$.
Then considering the boundary first, $$|z| =1 Rightarrow Big|frac{u}{u^2+v^2} -ifrac{v}{u^2+v^2}Big| =1 $$ Using Pythagoras gives $$left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1$$ but this is not the equation of a unit circle because I have this factor of $(u^2 + v^2)^2$ lying about, which is what the answer should be...
What's happening?
complex-analysis mobius-transformation
$endgroup$
add a comment |
$begingroup$
I am trying to find the image of ${z in mathbb{C} : |z| < 1}$ under $f(z) = frac{1}{z}$
Let $$w = frac{1}{z} Rightarrow z = frac{1}{w} = frac{1}{u+iv} = frac{u-iv}{u^2 + v^2}$$
if $w = u +iv$.
Then considering the boundary first, $$|z| =1 Rightarrow Big|frac{u}{u^2+v^2} -ifrac{v}{u^2+v^2}Big| =1 $$ Using Pythagoras gives $$left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1$$ but this is not the equation of a unit circle because I have this factor of $(u^2 + v^2)^2$ lying about, which is what the answer should be...
What's happening?
complex-analysis mobius-transformation
$endgroup$
add a comment |
$begingroup$
I am trying to find the image of ${z in mathbb{C} : |z| < 1}$ under $f(z) = frac{1}{z}$
Let $$w = frac{1}{z} Rightarrow z = frac{1}{w} = frac{1}{u+iv} = frac{u-iv}{u^2 + v^2}$$
if $w = u +iv$.
Then considering the boundary first, $$|z| =1 Rightarrow Big|frac{u}{u^2+v^2} -ifrac{v}{u^2+v^2}Big| =1 $$ Using Pythagoras gives $$left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1$$ but this is not the equation of a unit circle because I have this factor of $(u^2 + v^2)^2$ lying about, which is what the answer should be...
What's happening?
complex-analysis mobius-transformation
$endgroup$
I am trying to find the image of ${z in mathbb{C} : |z| < 1}$ under $f(z) = frac{1}{z}$
Let $$w = frac{1}{z} Rightarrow z = frac{1}{w} = frac{1}{u+iv} = frac{u-iv}{u^2 + v^2}$$
if $w = u +iv$.
Then considering the boundary first, $$|z| =1 Rightarrow Big|frac{u}{u^2+v^2} -ifrac{v}{u^2+v^2}Big| =1 $$ Using Pythagoras gives $$left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1$$ but this is not the equation of a unit circle because I have this factor of $(u^2 + v^2)^2$ lying about, which is what the answer should be...
What's happening?
complex-analysis mobius-transformation
complex-analysis mobius-transformation
asked Jan 22 at 14:06
PhysicsMathsLovePhysicsMathsLove
1,208414
1,208414
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Of course, it makes no sense to talk about the image of $0$ under $frac1z$, but the image of ${zinmathbb{C},|,lvert zrvert<1}setminus{0}$ is ${zinmathbb{C},|,lvert zrvert>1}$.
$endgroup$
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083201%2fimage-of-unit-disk-under-inversion-mobius-transformations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Of course, it makes no sense to talk about the image of $0$ under $frac1z$, but the image of ${zinmathbb{C},|,lvert zrvert<1}setminus{0}$ is ${zinmathbb{C},|,lvert zrvert>1}$.
$endgroup$
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
add a comment |
$begingroup$
Of course, it makes no sense to talk about the image of $0$ under $frac1z$, but the image of ${zinmathbb{C},|,lvert zrvert<1}setminus{0}$ is ${zinmathbb{C},|,lvert zrvert>1}$.
$endgroup$
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
add a comment |
$begingroup$
Of course, it makes no sense to talk about the image of $0$ under $frac1z$, but the image of ${zinmathbb{C},|,lvert zrvert<1}setminus{0}$ is ${zinmathbb{C},|,lvert zrvert>1}$.
$endgroup$
Of course, it makes no sense to talk about the image of $0$ under $frac1z$, but the image of ${zinmathbb{C},|,lvert zrvert<1}setminus{0}$ is ${zinmathbb{C},|,lvert zrvert>1}$.
answered Jan 22 at 14:08
José Carlos SantosJosé Carlos Santos
164k22131234
164k22131234
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
add a comment |
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
$begingroup$
Why does my method not yield the unit circle as the boundary?
$endgroup$
– PhysicsMathsLove
Jan 22 at 14:11
1
1
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
$begingroup$
begin{align}left(frac{u}{u^2 +v^2}right)^2 + left(frac{v}{u^2 +v^2}right)^2 = 1&ifffrac{u^2+v^2}{(u^2+v^2)^2}=1\&ifffrac1{u^2+v^2}=1\&iff u^2+v^2=1.end{align}
$endgroup$
– José Carlos Santos
Jan 22 at 14:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083201%2fimage-of-unit-disk-under-inversion-mobius-transformations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown